Multiple Differential Cryptanalysis: Theory and Practice

  • Céline Blondeau
  • Benoît Gérard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6733)

Abstract

Differential cryptanalysis is a well-known statistical attack on block ciphers. We present here a generalisation of this attack called multiple differential cryptanalysis. We study the data complexity, the time complexity and the success probability of such an attack and we experimentally validate our formulas on a reduced version of PRESENT. Finally, we propose a multiple differential cryptanalysis on 18-round PRESENT for both 80-bit and 128-bit master keys.

Keywords

iterative block cipher multiple differential cryptanalysis PRESENT data complexity success probability time complexity 

References

  1. 1.
    Albrecht, M., Cid, C.: Algebraic techniques in differential cryptanalysis. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 193–208. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Baignères, T., Vaudenay, S.: The complexity of distinguishing distributions (Invited talk). In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 210–222. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)Google Scholar
  5. 5.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4, 3–72 (1991)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Blondeau, C., Gérard, B.: On the data complexity of statistical attacks against block ciphers. In: Kholosha, A., Rosnes, E., Parker, M.G. (eds.) Workshop on Coding and Cryptography - WCC 2009, pp. 469–488 (2009)Google Scholar
  8. 8.
    Blondeau, C., Gérard, B.: Links between theoretical and effective differential probabilities: Experiments on present. In: TOOLS 2010 (2010), http://eprint.iacr.org/2010/261
  9. 9.
    Blondeau, C., Gérard, B., Tillich, J.-P.: Accurate estimates of the data complexity and success probability for various cryptanalyses. In: Charpin, P., Kholosha, S., Rosnes, E., Parker, M.G. (eds.) Designs, Codes and Cryptography, vol. 59(1-3). Springer, Heidelberg (2011)Google Scholar
  10. 10.
    Blondeau, C., Gérard, B.: Multiple Differential Cryptanalysis: Theory and Practice. Cryptology ePrint Archive, Report 2011/115 (2011), http://eprint.iacr.org/2011/115
  11. 11.
    Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Collard, B., Standaert, F.-X.: A statistical saturation attack against the block cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–210. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials in block ciphers. Journal of Mathematical Cryptology 1, 12–35 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gallager, R.G.: Information Theory and Reliable Communication. John Wiley and Sons, Chichester (1968)MATHGoogle Scholar
  15. 15.
    Harpes, C., Kramer, G.G., Massey, J.L.: A generalization of linear cryptanalysis and the applicability of matsui’s piling-up lemma. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  16. 16.
    Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Leander, G.: Small scale variants of the block cipher PRESENT. Cryptology ePrint Archive, Report 2010/143 (2010), http://eprint.iacr.org/2010/143
  18. 18.
    Cam, L.: An approximation theorem for the poisson binomial distribution. Pacific Journal of Mathematics 10, 1181–1197 (1960)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  20. 20.
    Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and algebraic cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Ohkuma, K.: Weak keys of reduced-round PRESENT for linear cryptanalysis. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 249–265. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Özen, O., Varici, K., Tezcan, C., Kocair, Ç.: Lightweight block ciphers revisited: Cryptanalysis of reduced round PRESENT and HIGHT. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. Journal of Cryptology 21, 131–147 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wang, M.: Differential cryptanalysis of reduced-round PRESENT. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Céline Blondeau
    • 1
  • Benoît Gérard
    • 1
  1. 1.SECRET Project-Team - INRIA Paris-RocquencourtLe Chesnay CedexFrance

Personalised recommendations