The Additive Differential Probability of ARX

  • Vesselin Velichkov
  • Nicky Mouha
  • Christophe De Cannière
  • Bart Preneel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6733)

Abstract

We analyze \(\mathrm{adp}^\texttt{ARX}\), the probability with which additive differences propagate through the following sequence of operations: modular addition, bit rotation and XOR (ARX). We propose an algorithm to evaluate \(\mathrm{adp}^\texttt{ARX}\) with a linear time complexity in the word size. This algorithm is based on the recently proposed concept of S-functions. Because of the bit rotation operation, it was necessary to extend the S-functions framework. We show that \(\mathrm{adp}^\texttt{ARX}\) can differ significantly from the multiplication of the differential probability of each component. To the best of our knowledge, this paper is the first to propose an efficient algorithm to calculate \(\mathrm{adp}^\texttt{ARX}\). Accurate calculations of differential probabilities are necessary to evaluate the resistance of cryptographic primitives against differential cryptanalysis. Our method can be applied to find more accurate differential characteristics for ARX-based constructions.

Keywords

Additive differential probability differential cryptanalysis symmetric-key ARX 

References

  1. 1.
    Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE. Submission to the NIST SHA-3 Competition, Round 2 (2008)Google Scholar
  2. 2.
    Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M.J.B., Billet, O. (eds.) [14], pp. 84–97Google Scholar
  3. 3.
    Bernstein, D.J.: CubeHash specification (2.B.1). Submission to the NIST SHA-3 Competition, Round 2 (2009)Google Scholar
  4. 4.
    Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget, A., Icart, T., Misarsky, J.-F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard, J.-R., Thuillet, C., Videau, M.: Shabal, a Submission to NIST’s Cryptographic Hash Algorithm Competition. Submission to the NIST SHA-3 Competition, Round 2 (2008)Google Scholar
  5. 5.
    Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-Universität Bochum (2005)Google Scholar
  6. 6.
    Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash Function Family. Submission to the NIST SHA-3 Competition, Round 2 (2009)Google Scholar
  7. 7.
    Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J., Mjølsnes, S.F.: Cryptographic Hash Function BLUE MIDNIGHT WISH. Submission to the NIST SHA-3 Competition, Round 2 (2009)Google Scholar
  8. 8.
    Leurent, G., Bouillaguet, C., Fouque, P.-A.: SIMD Is a Message Digest. Submission to the NIST SHA-3 Competition, Round 2 (2009)Google Scholar
  9. 9.
    Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties of Addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Lipmaa, H., Wallén, J., Dumas, P.: On the Additive Differential Probability of Exclusive-Or. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 317–331. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The Differential Analysis of S-Functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 36–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    National Institute of Standards and Technology. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register 27(212), 62212–62220 (2007), http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf (October 17, 2008)
  13. 13.
    Needham, R.M., Wheeler, D.J.: Tea extensions. Computer Laboratory, Cambridge University, England (1997), http://www.movable-type.co.uk/scripts/xtea.pdf Google Scholar
  14. 14.
    Robshaw, M.J.B., Billet, O. (eds.): New Stream Cipher Designs - The eSTREAM Finalists. LNCS, vol. 4986. Springer, Heidelberg (2008)MATHGoogle Scholar
  15. 15.
    Staffelbach, O., Meier, W.: Cryptographic Significance of the Carry for Ciphers Based on Integer Addition. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 601–613. Springer, Heidelberg (1991)Google Scholar
  16. 16.
    Wu, H.: The Stream Cipher HC-128. In: Robshaw, M.J.B., Billet, O. (eds.) [14], pp. 39–47Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vesselin Velichkov
    • 1
    • 2
  • Nicky Mouha
    • 1
    • 2
  • Christophe De Cannière
    • 1
    • 2
  • Bart Preneel
    • 1
    • 2
  1. 1.Department of Electrical Engineering ESAT/SCD-COSICKatholieke Universiteit LeuvenHeverleeBelgium
  2. 2.Interdisciplinary Institute for BroadBand Technology (IBBT)Belgium

Personalised recommendations