Homotopy-Theoretic Models of Type Theory
Conference paper
Abstract
We introduce the notion of a logical model category, which is a Quillen model category satisfying some additional conditions. Those conditions provide enough expressive power that one can soundly interpret dependent products and sums in it while also having a purely intensional interpretation of the identity types. On the other hand, those conditions are easy to check and provide a wide class of models that are examined in the paper.
Keywords
Model Category Type Theory Weak Equivalence Grothendieck Topology Weak Factorization System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [AK11]Arndt, P., Kapulkin, C.: ∏- and ∑-types in homotopy theoretic models of type theory (work in progress)Google Scholar
- [AW09]Awodey, S., Warren, M.A.: Homotopy theoretic models of identity types. Math. Proc. of the Cam. Phil. Soc. (2009)Google Scholar
- [Awo10]Awodey, S.: Type theory and homotopy (2010) (preprint)Google Scholar
- [Bar10]Barwick, C.: On left and right model categories and left and right bousfield localizations. Homology, Homotopy and Applications 12(2), 245–320 (2010)CrossRefzbMATHGoogle Scholar
- [Bat98]Batanin, M.A.: Monoidal globular categories as a natural environment for the theory of weak n-categories. Adv. Math. 136(1), 39–103 (1998)CrossRefzbMATHGoogle Scholar
- [Cis02]Cisinski, D.-C.: Théories homotopiques dans les topos. J. Pure Appl. Algebra 174(1), 43–82 (2002); MR1924082 (2003i:18021)CrossRefzbMATHGoogle Scholar
- [Cis06]Cisinski, D.-C.: Les préfaisceaux comme modèles des types d’homotopie. Astérisque, (308), xxiv+390 (2006); MR 2294028 (2007k:55002)Google Scholar
- [Con72]Conduché, F.: Au sujet de l’existence d’adjoints à droite aux foncteurs “image réciproque” dans la catégorie des catégories. C. R. Acad. Sci. Paris Sér. A-B 275, A891–A894 (1972)zbMATHGoogle Scholar
- [Gar08]Garner, R.: 2-dimensional models of type theory. Mathematical Structures in Computer Science (2008) (to appear)Google Scholar
- [GG08]Gambino, N., Garner, R.: The identity type weak factorisation system. Theoretical Computer Science 409(1), 94–109 (2008)CrossRefzbMATHGoogle Scholar
- [Gir64]Giraud, J.: Méthode de la descente. Mémoires de la Soc. Math. de France 2 (1964)Google Scholar
- [GK09]Gambino, N., Kock, J.: Polynomial functors and polynomial monads (to appear)Google Scholar
- [GvdB08]Garner, R., van den Berg, B.: Types are weak ω-groupoids (2008) (submitted)Google Scholar
- [GvdB10]Garner, R., van den Berg, B.: Topological and simplicial models of identity types (2010) (submitted)Google Scholar
- [Hir03]Hirschhorn, P.S.: Model categories and their localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003), MR 1944041 (2003j:18018)zbMATHGoogle Scholar
- [Hov99]Hovey, M.: Model categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999)zbMATHGoogle Scholar
- [HS98]Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In: Twenty-Five Years of Constructive Type Theory (Venice, 1995). Oxford Logic Guides, vol. 36, pp. 83–111. Oxford Univ. Press, New York (1998)Google Scholar
- [Kap10]Kapulkin, C.: Homotopy theoretic models of type theory, Masters Thesis (University of Warsaw) (2010)Google Scholar
- [Lei04]Leinster, T.: Higher operads, higher categories. London Mathematical Society Lecture Note Series, vol. 298. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
- [Lum08]Lumsdaine, P.L.: Weak ω-categories from intensional type theory, extended version (2008)Google Scholar
- [Lum10]Lumsdaine, P.L.: Higher categories from type theories, Ph.D. thesis, CMU (2010)Google Scholar
- [Lur09]Lurie, J.: Higher topos theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
- [ML72]Martin-Löf, P.: An intuitionstic theory of types, Technical Report, University of Stockholm (1972)Google Scholar
- [MV99]Morel, F., Voevodsky, V.: A 1-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math. (1999) (90), 45–143 (2001); MR 1813224 (2002f:14029)Google Scholar
- [NPS90]Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s type theory. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
- [Qui67]Quillen, D.: Homotopical algebra. Lecture Notes in Mathematics, vol. 43. Springer, Heidelberg (1967)zbMATHGoogle Scholar
- [Rez02]Rezk, C.: Every homotopy theory of simplicial algebras admits a proper model. Topology Appl. 119(1), 65–94 (2002); MR 1881711 (2003g:55033)CrossRefzbMATHGoogle Scholar
- [See84]Seely, R.A.G.: Locally cartesian closed categories and type theory. Math. Proc. Cambridge Philos. Soc. 95(1), 33–48 (1984)CrossRefzbMATHGoogle Scholar
- [SU06]Sørensen, M.H., Urzyczyn, P.: Lectures on Curry–Howard isomorphism. Studies in Logic and the Foundations of Mathematics, vol. 149. Eslevier, Amsterdam (2006)zbMATHGoogle Scholar
- [Voe98]Voevodsky, V.: \(\bold A^1\)-homotopy theory. In: Proceedings of the International Congress of Mathematicians, Berlin, vol. I, pp. 579–604 (electronic) (1998); MR 1648048 (99j:14018)Google Scholar
- [War08]Warren, M.A.: Homotopy theoretic aspects of constructive type theory, Ph.D. thesis, CMU (2008)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011