Advertisement

Hydra Go Bacterial

  • Thomas C. G. BoschEmail author
  • Friederike Anton-Erxleben
  • René Augustin
  • Sören Franzenburg
  • Sebastian Fraune
Chapter

Abstract

This chapter provides an overview of how the basal metazoan Hydra serves as model for untangling and dissecting the fundamental principles underlying complex host–microbe interactions.

Keywords

Microbial Community Gastric Cavity Beneficial Microbe Hydra Species Microbial Associate Molecular Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Research in our laboratory is supported in parts by grants from the Deutsche Forschungsgemeinschaft (DFG) and grants from the DFG Cluster of Excellence programs “The Future Ocean” and “Inflammation at Interfaces.”

References

  1. Augustin R, Siebert S, Bosch TCG (2009a) Identification of a kazal-type serine protease inhibitor with potent anti-staphylococcal activity as part of Hydra’s innate immune system. Dev Comp Immunol 33:830–837PubMedCrossRefGoogle Scholar
  2. Augustin R, Anton-Erxleben F, Jungnickel S, Hemmrich G, Spudy B, Podschun R, Bosch TCG (2009b) Activity of the novel peptide arminin against multiresistant human pathogens shows the considerable potential of phylogenetically ancient organisms as drug sources. Antimicrob Agents Chemother 53:5245–5250PubMedCrossRefGoogle Scholar
  3. Bosch TCG, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G et al (2009) Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Dev Comp Immunol 33:559–569PubMedCrossRefGoogle Scholar
  4. Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T et al (2010) The dynamic genome of Hydra. Nature 464:592–596PubMedCrossRefGoogle Scholar
  5. Cheesman SE, Neal JT, Mittge E, Seredick BM, Guillemin K (2010) Microbes and Health Sackler Colloquium: epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1000072107
  6. Fraune S, Bosch TCG (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA 104:13146–13151PubMedCrossRefGoogle Scholar
  7. Fraune S, Bosch TCG (2010) Why bacteria matter in animal development and evolution. Bioessays 32:571–580PubMedCrossRefGoogle Scholar
  8. Fraune S, Abe Y, Bosch TCG (2009) Disturbing epithelial homeostasis in the metazoan Hydra leads to drastic changes in associated microbiota. Environ Microbiol 11:2361–2369PubMedCrossRefGoogle Scholar
  9. Fraune S, Augustin R, Anton-Erxleben F, Wittlieb J, Gelhaus C et al (2010) In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. Proc Natl Acad Sci USA 107:18067–18072PubMedCrossRefGoogle Scholar
  10. Gee L, Hartig J, Law L, Wittlieb J, Khalturin K et al (2010) Beta-catenin plays a central role in setting up the head organizer in hydra. Dev Biol 340:116–124PubMedCrossRefGoogle Scholar
  11. Hemmrich G, Bosch TCG (2008) Compagen, a comparative genomics platform for early branching metazoan animals, reveals early origins of genes regulating stem-cell differentiation. Bioessays 30:1010–1018PubMedCrossRefGoogle Scholar
  12. Jung S, Dingley AJ, Augustin R, Anton-Erxleben F, Stanisak M et al (2009) Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan Hydra. J Biol Chem 284:1896–1905PubMedCrossRefGoogle Scholar
  13. Kortschak RD, Samuel G, Saint R, Miller DJ (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 13:2190–2195PubMedCrossRefGoogle Scholar
  14. Lange C, Hemmrich G, Klostermeier UC, López-Quintero JA, Miller DJ et al (2011) Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol. doi: 10.1093/molbev/msq349
  15. Miller DJ, Ball EE, Technau U (2005) Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet 21:536–539PubMedCrossRefGoogle Scholar
  16. Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M et al (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. Proc Natl Acad Sci USA. doi: 10.1371/journal.pbio.1000546
  17. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94PubMedCrossRefGoogle Scholar
  18. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U et al (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960PubMedCrossRefGoogle Scholar
  19. Steele RE, David CN, Technau U (2011) A genomic view of 500 million years of cnidarian evolution. Trends Genet 27(1):7–13PubMedCrossRefGoogle Scholar
  20. Technau U, Rudd S, Maxwell P, Gordon PM, Saina M et al (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21:633–639PubMedCrossRefGoogle Scholar
  21. Trembley A (1744) Mémoires, Pour Servir à l´Histoire d´un Genre de Polypes d´Eau Douce, à Bras en Frome de Cornes. Verbeek, LeidenGoogle Scholar
  22. Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TCG (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci USA 103:6208–6211PubMedCrossRefGoogle Scholar
  23. Steele RE, David CN, Technau U (2011) A genomic view of 500 million years of cnidarian evolution. Trends Genet. Jan 27(1):7–13Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas C. G. Bosch
    • 1
    Email author
  • Friederike Anton-Erxleben
    • 1
  • René Augustin
    • 1
  • Sören Franzenburg
    • 1
  • Sebastian Fraune
    • 1
  1. 1.Zoologisches InstitutChristian-Albrechts-UniversitätKielGermany

Personalised recommendations