Advertisement

Novel Human-Centered Rehabilitation Robot with Biofeedback for Training and Assessment

  • Runze Yang
  • Linhong Ji
  • Hongwei Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6768)

Abstract

We present the novel human-centered rehabilitation methods from the research as well as literature to provide the robot assisted rehabilitation control strategies and motor function assessment methods. The research is based on the upper extremity compound movements (UECM) rehabilitation training robot [1], which is applied to the rehabilitation of upper extremity functions in patients with movement disorders. So called “human-centered” [2]or “patient-cooperative” strategies can take into account the patient’s individual situations, intentions and efforts rather than imposing predefined instructions. It is considered that such robot-assisted methods can improve the therapeutic outcome compared to classical rehabilitation methods.

Keywords

Human-centered Rehabilitation robot Control strategy Biofeedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, L.: Development of A Multi-posture Hemiplegia Rehabilitation Training Robot for Upper Extremity Compound-Motion. Tsinghua University, Beijing (2008)Google Scholar
  2. 2.
    Khatib, O., Brock, O., Chang, K.S., Ruspini, D., Sentis, L., Sriram, V.: Human-centered robotics and interactive haptic simulation. The Int. Journal of Robotics Research 23, 167–178 (2004)CrossRefGoogle Scholar
  3. 3.
    Barbeau, H., Rossignol, S.: Enhancement of locomotor recovery following spinal cord injury. Current Opinion in Neurology 7, 517–524 (1994)CrossRefGoogle Scholar
  4. 4.
    Hogan, N., Krebs, H.I., et al.: Robot-aided neurorehabilitation. IEEE Trans. Rehab. Eng. 6, 75–87 (1998)CrossRefGoogle Scholar
  5. 5.
    O’Dwyer, N.J., Ada, L., Neilson, P.D.: Spasticity and muscle contracture following stroke. Brain 119, 1737–1749 (1996)CrossRefGoogle Scholar
  6. 6.
    Stefanov, D., Bien, Z.Z.: Advances in Rehabilitation Robotics. LNCIS, vol. 306, pp. 25–44. Springer, Heidelberg (2004)MATHGoogle Scholar
  7. 7.
    Riener, R., Wellner, M., Nef, T., et al.: A view on VR-enhanced rehabilitation robotics. In: 2006 International Workshop on Virtual Rehabilitation, New York, pp. 149–154 (2006)Google Scholar
  8. 8.
    Hogan, N., Krebs, H.I., et al.: MIT-MANUS: A Workstation for Manual and Training. In: IEEE International Workshop on Robot and Human Communication, Tokyo, pp. 161–165 (1992)Google Scholar
  9. 9.
    Colombo, G., Joerg, M., Schreier, R., Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37(6), 693–700 (2000)Google Scholar
  10. 10.
    Nef, T., Riener, R.: ARMin-Design of a novel arm rehabilitation robot. In: ICORR 2005, 9th International Conference on Rehabilitation Robotics, pp. 57–60 (2005)Google Scholar
  11. 11.
    Zhang, L.-Q., Park, H.-S., Ren, Y.: Developing an intelligent robotic arm for stroke rehabilitation. In: ICORR 2007, 10th International Conference on Rehabilitation Robotics, pp. 984–993 (2007)Google Scholar
  12. 12.
    Hogan, N.: Impedance control: An Approach to Manipulation. Journal of Dynamic Systems, Measurement, and Control 107, 1–23 (1985)CrossRefMATHGoogle Scholar
  13. 13.
    Riener, R., Fuhr, T.: Patient-driven control of FES-supported standing-up: A simulation study. IEEE Transactions on Rehabilitation Engineering 6, 113–124 (1998)CrossRefGoogle Scholar
  14. 14.
    Jezernik, S., Colombo, G., Morari, M.: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Robotics and Automation 20(3), 574–582 (2004)CrossRefGoogle Scholar
  15. 15.
    Ren, Y.: Robotic Assist Control and Evaluation System for Upper Limb Rehabilitation. Tsinghua University, Beijing (2004)Google Scholar
  16. 16.
    Riener, R., Lünenburger, L., Colombo, G.: Human-centered robotics applied to gait training and assessment. JRRD 43, 679–694 (2006)CrossRefGoogle Scholar
  17. 17.
    Motion Analysis Corporation, http://www.motionanalysis.com/
  18. 18.
    MusculoGraphics, Inc., http://www.musculographics.com/
  19. 19.
    Wang, Z., Chen, L., Yao, C., et al.: The influence of transforming operation plane on compound movement training in upper limb robot aided rehabilitation. Chinese Journal of Rehabilitation Medicine 24, 65–67 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Runze Yang
    • 1
  • Linhong Ji
    • 1
  • Hongwei Chen
    • 1
  1. 1.Department of Precision Instruments and MechanologyTsinghua UniversityBeijingP.R. China

Personalised recommendations