A Top-k Analysis Using Multi-level Association Rule Mining for Autism Treatments

  • Kelley M. Engle
  • Roy Rada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6768)


Association rule mining is based on associations of attribute values in a database. To facilitate finding meaningful rules, we segment the database by a categorization of database records based on a taxonomy on one of the attribute value sets. To test the value of this approach we have applied it to a large database about treatment impacts on autistic children. The segmented analyses lead to interestingly, different results from the analyses done without segmentation.


association rule mining autism data mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufman, Amsterdam (2006)MATHGoogle Scholar
  2. 2.
    Green, V.A., et al.: Internet survey of treatments used by parents of children with autism. Research in Developmental Disabilities 27(1), 70–84 (2006)CrossRefGoogle Scholar
  3. 3.
    Parikh, M.S., Kolevzon, A., Hollander, E.: Psychopharmacology of aggression in children and adolescents with autism: a critical review of efficacy and tolerability. Journal of Child and Adolescent Psychopharmacology 18(2), 157–178 (2008)CrossRefGoogle Scholar
  4. 4.
    Paplinski, A.P., Gustafsson, L.: An attempt in modelling early intervention in autism using neural networks. In: 2004 IEEE International Joint Conference on Neural Networks, 2002. IEEE, Piscataway (2004)Google Scholar
  5. 5.
    Freeman, R.L., Grzymala-Busse, J.W., Harvey, M.: Functional behavioral assessment using the LERS data mining system - Strategies for understanding complex physiological and behavioral patterns. Journal of Intelligent Information Systems 21(2), 173–181 (2003)CrossRefGoogle Scholar
  6. 6.
    Booker, L.B., Goldberg, D.E., Holland, J.F.: Classifier systems and genetic algorithms. In: Carbonell, J.G. (ed.) Machine Learning Paradigms and Methods, pp. 236–282. Elsevier North-Holland, Inc., New York (1990)Google Scholar
  7. 7.
    Holland, J.H., Holyoak, K.J., Nisbett, R.E.: Induction processes of infererence, learning, and discovery. The MIT Press, Cambridge (1986)Google Scholar
  8. 8.
    Hrncir, Z., Komarek, V.: Analyses of EEG recordings. Neural Network World 14(1), 21–25 (2004)Google Scholar
  9. 9.
    Veeraraghavan, S., Srinivasan, K., Latifi, S.: Exploration of autism using expert systems. In: 4th International Conference on Information Technology New Generations. IEEE Comput. Soc., Los Alamitos (2007)Google Scholar
  10. 10.
    Petric, I., Urbancic, T., Cestnik, B.: Discovering hidden knowledge from biomedical literature. Informatica Slovenia 31(1), 15–20 (2007)Google Scholar
  11. 11.
    Urbancic, T., Cestnik, B., Macedoni-Luksic, M.: Literature mining method RaJoLink for uncovering relations between biomedical concepts. Journal of Biomedical Informatics 42(2), 219–227 (2009)CrossRefGoogle Scholar
  12. 12.
    Urbancic, T., et al.: Literature mining: Towards better understanding of autism. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 217–226. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Schweikert, C., et al.: Analysis of autism prevalence and neurotoxins using combinatorial fusion and association rule mining. In: 9th IEEE International Conference on Bioinformatics and BioEngineering (BIBE), p. 400–404 (2009)Google Scholar
  14. 14.
    Aman, M.G., Arnold, L.E., Ramadan, Y.: Randomized, controlled, crossover trial of methylphenidate in pervasive developmental disorders with hyperactivity. Archives of General Psychiatry 62(11), 1266–1274 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kelley M. Engle
    • 1
  • Roy Rada
    • 1
  1. 1.Department of Information SystemsUniversity of Maryland Baltimore County (UMBC)BaltimoreUSA

Personalised recommendations