Exact Compensation of Color-Weakness with Discrimination Threshold Matching

  • Rika Mochizuki
  • Satoshi Oshima
  • Reiner Lenz
  • Jinhui Chao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6768)


In this paper we describe a novel compensation algorithm for color-weakness based on a new, objective criterion to compare normal observers and color-weak observers, using Riemann geometric properties of color spaces. The criterion is to match the color discrimination thresholds of average, normal observers and a colorweak observer. The method uses local and global isometry theory and provides the two groups of observers with the same color-difference experience. A one-dimensional compensation and simulation of color-weakness is shown as an application of the general approach to the Brettel color-blind model. The 2D and 3D compensations and simulations are illustrated in chromaticity planes and full color spaces.


Color Space Color Vision Discrimination Threshold Color Perception Color Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brettel, H., Vienot, F., Mollon, J.D.: Computerized simulation of color appearance for dichromats. Journal of Optical Society of America 14(10), 2647–2655 (1997)CrossRefGoogle Scholar
  2. 2.
    Ichikawa, M., Tanaka, K., Kondo, S., Hiroshima, K., Ichikawa, K., Tanabe, S., Fukami, K.: Preliminary Study on Color Modification for Still Images to Realize Barrier-Free Color Vision. In: Proc. IEEE International Conference on Systems, Man and Cybernetics SMC 2004 (2004)Google Scholar
  3. 3.
    Troiano, L., Birtolo, C., Italiane, P.: Adapting Palettes to Color Vision Deficiencies by Genetic Algorithm. In: Proc. 10th Genetic And Evolutionary Computation Conference, in CD-ROM (2008)Google Scholar
  4. 4.
    Wyszecki, G., Stiles, W.S.: Color Science, 2nd edn. Wiley Classics Library, Chichester (2000)Google Scholar
  5. 5.
    do Carmo, M.P.: Riemannian Geometry. Birkhauser, Basel (1992)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chao, J., Osugi, I., Suzuki, M.: On definitions and construction of uniform color space. In: Proceedings of CGIV 2004, The Second European Conference on Colour in Graphics, Imaging and Vision, April 5-8, pp. 55–60 (2004)Google Scholar
  7. 7.
    Regan, B.C., Reffin, J.P., Mollon, J.D.: Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Research 34(10), 1279–1299 (1994)CrossRefGoogle Scholar
  8. 8.
    Mochizuki, R., Nakamura, T., Chao, J., Lenz, R.: Color-weak correction by discrimination threshold matching. In: Proceedings of CGIV 2008, 4th European Conference on Color in Graphics, Imaging, and Vision, June 9-13, pp. 208–213 (2008)Google Scholar
  9. 9.
    Chao, J., Lenz, R., Matsumoto, D., Nakamura, T.: Riemann geometry for color characterization and mapping. In: Proceedings of CGIV2008, 4th European Conference on Color in Graphics, Imaging, and Vision, June 9-13, pp. 277–282 (2008)Google Scholar
  10. 10.
    Ohshima, S., Mochizuki, R., Chao, J., Lenz, R.: Color-reproduction using Riemann normal coordinates. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2009. LNCS, vol. 5646, pp. 140–149. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rika Mochizuki
    • 1
    • 2
  • Satoshi Oshima
    • 2
  • Reiner Lenz
    • 3
  • Jinhui Chao
    • 2
  1. 1.NTT Cyber Solutions LaboratoriesYokosuka-shiJapan
  2. 2.Dept. of Science and EngineeringChuo UniversityBunkyo-kuJapan
  3. 3.Dept. Science and EngineeringLinköping UniversityNorrköpingSweden

Personalised recommendations