From Requirements to Models: Feedback Generation as a Result of Formalization

  • Leonid Kof
  • Birgit Penzenstadler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6741)


Natural language is the main presentation means in industrial requirements documents. In addition, communication between the different stakeholders is often insufficient, therefore requirements documents are frequently incomplete and inconsistent. This causes problems during modeling or programming.

The aim of the presented paper is to make deficiencies in behavior specifications apparent in the early project stage. The basic idea is to model the required system behavior and to generate feedback for human analysts, based on the deficiencies of the resulting models. The presented feedback generation was evaluated in an experiment. It was found that it can address genuine problems of requirements documents.


Requirements Engineering Model Extraction Feedback Generation 


  1. 1.
    Mich, L., Franch, M., Novi Inverardi, P.: Market research on requirements analysis using linguistic tools. Requirements Engineering 9(1), 40–56 (2004)CrossRefGoogle Scholar
  2. 2.
    Kof, L., Schätz, B.: Combining aspects of reactive systems. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 344–349. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Kof, L.: Scenarios: Identifying missing objects and actions by means of computational linguistics. In: 15th IEEE International Requirements Engineering Conference, October 15–19, pp. 121–130. IEEE Computer Society Conference Publishing Services, New Delhi (2007)CrossRefGoogle Scholar
  4. 4.
    Kof, L.: From Textual Scenarios to Message Sequence Charts: Inclusion of Condition Generation and Actor Extraction. In: 16th IEEE International Requirements Engineering Conference, September 10-12, pp. 331–332. IEEE Computer Society Conference Publishing Services, Barcelona (2008)Google Scholar
  5. 5.
    Buhr, K., Heumesser, N., Houdek, F., Omasreiter, H., Rothermehl, F., Tavakoli, R., Zink, T.: DaimlerChrysler demonstrator: System specification instrument cluster (2004), (accessed 16.02.2010)
  6. 6.
    Kof, L.: Translation of Textual Specifications to Automata by Means of Discourse Context Modeling. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009. LNCS, vol. 5512, pp. 197–211. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Abrial, J.-R., Börger, E., Langmaack, H.: The steam boiler case study: Competition of formal program specification and development methods. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Dagstuhl Seminar 1995. LNCS, vol. 1165. Springer, Heidelberg (1996),
  8. 8.
    Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In: ACL 2004: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 103. Association for Computational Linguistics, Morristown (2004)CrossRefGoogle Scholar
  9. 9.
    Gleich, B., Creighton, O., Kof, L.: Ambiguity detection: Towards a tool explaining ambiguity sources. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software specification: Linguistic sources of ambiguity, (accessed 18.11.2004)
  11. 11.
    Saeki, M., Horai, H., Enomoto, H.: Software development process from natural language specification. In: Proceedings of the 11th International Conference on Software Engineering, pp. 64–73. ACM Press, New York (1989)Google Scholar
  12. 12.
    Overmyer, S.P., Lavoie, B., Rambow, O.: Conceptual modeling through linguistic analysis using LIDA. In: ICSE 2001: Proceedings of the 23rd International Conference on Software Engineering, pp. 401–410. IEEE Computer Society, Washington, DC, USA (2001)CrossRefGoogle Scholar
  13. 13.
    Ermagan, V., Huang, T.-J., Krüger, I., Meisinger, M., Menarini, M., Moorthy, P.: Towards Tool Support for Service-Oriented Development of Embedded Automotive Systems. In: Proceedings of the Dagstuhl Workshop on Model-Based Development of Embedded Systems (MBEES 2007), Informatik-Bericht 2007-01, Fakultät für Informatik, Technische Universität Braunschweig (2007)Google Scholar
  14. 14.
    Rupp, C.: Requirements-Engineering und -Management. Professionelle, iterative Anforderungsanalyse für die Praxis, 2nd edn. Hanser–Verlag (May 2002) ISBN 3-446-21960-9Google Scholar
  15. 15.
    Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The linguistic approach to the natural language requirements quality: benefit of the use of an automatic tool. In: 26th Annual NASA Goddard Software Engineering Workshop, pp. 97–105. IEEE Computer Society, Greenbelt (2001), (accessed 08.02.2010)
  16. 16.
    Kamsties, E., Berry, D.M., Paech, B.: Detecting ambiguities in requirements documents using inspections. In: Workshop on Inspections in Software Engineering, Paris, France, pp. 68–80 (2001)Google Scholar
  17. 17.
    Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in natural language requirements. In: RE 2006: Proceedings of the 14th IEEE International Requirements Engineering Conference (RE 2006), pp. 56–65. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  18. 18.
    Goldin, L., Berry, D.M.: AbstFinder, a prototype natural language text abstraction finder for use in requirements elicitation. Automated Software Eng. 4(4), 375–412 (1997)CrossRefGoogle Scholar
  19. 19.
    Abbott, R.J.: Program design by informal English descriptions. Communications of the ACM 26(11), 882–894 (1983)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge as an aid to deep understanding in early phase requirements engineering. IEEE Trans. Softw. Eng. 31(11), 969–981 (2005)CrossRefGoogle Scholar
  21. 21.
    Vadera, S., Meziane, F.: From English to formal specifications. The Computer Journal 37(9), 753–763 (1994)CrossRefGoogle Scholar
  22. 22.
    Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language requirements. ACM Trans. Softw. Eng. Methodol. 14(3), 277–330 (2005)CrossRefGoogle Scholar
  23. 23.
    Breaux, T.D., Antón, A.I., Doyle, J.: Semantic parameterization: A process for modeling domain descriptions. ACM Trans. Softw. Eng. Methodol. 18(2), 1–27 (2008)CrossRefGoogle Scholar
  24. 24.
    Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach supporting property elucidation. In: ICSE 2002: Proceedings of the 24th International Conference on Software Engineering, pp. 11–21. ACM, New York (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Leonid Kof
    • 1
  • Birgit Penzenstadler
    • 1
  1. 1.Fakultät für InformatikTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations