Advertisement

A Semantic Approach for Business Process Model Abstraction

  • Sergey Smirnov
  • Hajo A. Reijers
  • Mathias Weske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6741)

Abstract

Models of business processes can easily become large and difficult to understand. Abstraction has proven to be an effective means to present a readable, high-level view of a business process model, by showing aggregated activities and leaving out irrelevant details. Yet, it is an open question how to combine activities into high-level tasks in a way that corresponds to such actions by experienced modelers. In this paper, an approach is presented that exploits semantic information within a process model, beyond structural information, to decide on which activities belong to one another. In an experimental validation, we used an industrial process model repository to compare this approach with actual modeling decisions, showing a strong correlation between the two. As such, this paper contributes to the development of modeling support for the application of effective process model abstraction, easing the use of business process models in practice.

Keywords

business process modeling model management business process model abstraction activity clustering 

References

  1. 1.
    van der Aalst, W.M.P., Basten, T.: Life-Cycle Inheritance: A Petri-Net-Based Approach. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 62–81. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Aguilar, E.R., Ruiz, F., García, F., Piattini, M.: Evaluation Measures for Business Process Models. In: SAC 2006, pp. 1567–1568. ACM, New York (2006)Google Scholar
  3. 3.
    Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J.-M.: Formalization of the Whole-Part Relationship in the Unified Modeling Language. IEEE TSE 29(5), 459–470 (2003)Google Scholar
  4. 4.
    Berthelot, G.: Transformations and Decompositions of Nets. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266, pp. 359–376. Springer, Heidelberg (1987)Google Scholar
  5. 5.
    Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Casati, F., Shan, M.-C.: Semantic Analysis of Business Process Executions. In: EDBT 2002, pp. 287–296. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Alves de Medeiros, A.K., van der Aalst, W.M.P., Pedrinaci, C.: Semantic Process Mining Tools: Core Building Blocks. In: ECIS 2008, Galway, Ireland, pp. 1953–1964 (2008)Google Scholar
  8. 8.
    Di Francescomarino, C., Marchetto, A., Tonella, P.: Cluster-based Modularization of Processes Recovered from Web Applications. Journal of Software Maintenance and Evolution: Research and Practice (2010)Google Scholar
  9. 9.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph Matching Algorithms for Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Eshuis, R., Grefen, P.: Constructing Customized Process Views. Data Knowl. Eng. 64(2), 419–438 (2008)CrossRefGoogle Scholar
  11. 11.
    Franzblau, A.N.: A Primer of Statistics for Non-statisticians. Harcourt, Brace & World, New York (1958)Google Scholar
  12. 12.
    Gerstman, B.B.: StatPrimer – Version 6.4. Technical report, San Jose State University (2010), http://www.sjsu.edu/faculty/gerstman/StatPrimer/
  13. 13.
    Guizzardi, G.: Modal Aspects of Object Types and Part-Whole Relations and the de re/de dicto Distinction. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 5–20. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Günther, C.W., van der Aalst, W.M.P.: Mining Activity Clusters from Low-Level Event Logs. BETA Working Paper Series, WP, vol. 165 (2006)Google Scholar
  15. 15.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Hartigan, J.: Clustering Algorithms. John Wiley and Sons, New York (1975)zbMATHGoogle Scholar
  17. 17.
    Henderson-Sellers, B., Gonzalez-Perez, C.: Granularity in Conceptual Modelling: Application to Metamodels. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 219–232. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business Process Management: A Vision Towards Using Semantic Web Services for Business Process Management. In: ICEBE, pp. 535–540. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  19. 19.
    Indulska, M., Recker, J., Rosemann, M., Green, P.: Business Process Modeling: Current Issues and Future Challenges. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 501–514. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Keller, G., Teufel, T.: SAP R/3 Process Oriented Implementation. Addison-Wesley Longman Publishing Co., Inc., Boston (1998)Google Scholar
  21. 21.
    Kühne, T.: Matters of (Meta-) Modeling. Software and Systems Modeling 5(4), 369–385 (2006)CrossRefGoogle Scholar
  22. 22.
    Kühne, T.: Contrasting Classification with Generalisation. In: APCCM 2009. CRPIT, vol. 96 (January 2009)Google Scholar
  23. 23.
    Mendling, J., Verbeek, H., van Dongen, B., van der Aalst, W.M.P., Neumann, G.: Detection and Prediction of Errors in EPCs of the SAP Reference Model. Data Knowl. Eng. 64(1), 312–329 (2008)CrossRefGoogle Scholar
  24. 24.
    Polyvyanyy, A., Smirnov, S., Weske, M.: The Triconnected Abstraction of Process Models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 229–244. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Reijers, H.A., Mendling, J.: Modularity in Process Models: Review and Effects. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 20–35. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process Management Journal 12(2), 249 (2006)CrossRefGoogle Scholar
  27. 27.
    Sadiq, W., Orlowska, M.E.: Analyzing Process Models Using Graph Reduction Techniques. Information Systems 25(2), 117–134 (2000)CrossRefGoogle Scholar
  28. 28.
    Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Communications of the ACM 18(11), 613–620 (1975)CrossRefzbMATHGoogle Scholar
  29. 29.
    Schaeffer, S.E.: Graph Clustering. Computer Science Review 1(1), 27–64 (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Sharp, A., McDermott, P.: Workflow Modeling: Tools for Process Improvement and Applications Development. Artech House Publishers, Boston (2008)Google Scholar
  31. 31.
    Smirnov, S., Dijkman, R., Mendling, J., Weske, M.: Meronymy-Based Aggregation of Activities in Business Process Models. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Smirnov, S., Reijers, H.A., Nugteren, T., Weske, M.: Business Process Model Abstraction: Theory and Practice. Technical Report 35, Hasso Plattner Institute (2010), http://bpt.hpi.uni-potsdam.de/pub/Public/SergeySmirnov/abstractionUseCases.pdf
  33. 33.
    Vanderfeesten, I.T.P., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Cardoso, J.: On a Quest for Good Process Models: The Cross-Connectivity Metric. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 480–494. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. 35.
    Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP Framework: Identification of Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sergey Smirnov
    • 1
  • Hajo A. Reijers
    • 2
  • Mathias Weske
    • 1
  1. 1.Hasso Plattner InstituteUniversity of PotsdamGermany
  2. 2.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations