Efficient Selection of Representative Views and Navigation Paths for Volume Data Exploration

  • Eva Monclús
  • Pere-Pau Vázquez
  • Isabel Navazo
Part of the Mathematics and Visualization book series (MATHVISUAL)


The visualization of volumetric datasets, quite common in medical image processing, has started to receive attention fromother communities such as scientific and engineering. The main reason is that it allows the scientists to gain important insights into the data. While the datasets are becoming larger and larger, the computational power does not always go hand to hand, because the requirements of using low-end PCs or mobile phones increase. As a consequence, the selection of an optimal viewpoint that improves user comprehension of the datasets is challenged with time consuming trial and error tasks. In order to facilitate the exploration process, informative viewpoints together with camera paths showing representative information on the model can be determined. In this paper we present amethod for representative viewselection and path construction, togetherwith some accelerations that make this process extremely fast on a modern GPU.


Good View Kolmogorov Complexity View Selection Representative View Exploration Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bardera, A., Feixas, M., Boada, I., Sbert, M.: Compression-based image registration. In: Proc. of IEEE International Conference on Information Theory. IEEE (2006)Google Scholar
  2. 2.
    Bennett, C., Gacs, P., Li, M., Vitanyi, P., Zurek, W.: Information distance. IEEETIT: IEEE Transactions on Information Theory 44 (1998)Google Scholar
  3. 3.
    Bordoloi, U., Shen, H.W.: View selection for volume rendering. In: IEEE Visualization, 487-494 (2005)Google Scholar
  4. 4.
    Cebrián, M., Alfonseca, M., Ortega, A.: The normalized compression distance is resistant to noise. IEEE Transactions on Information Theory 53(5), 1895-1900 (2007)Google Scholar
  5. 5.
    Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Trans. Information Theory 51(4), 1523-1545 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gumhold, S.: Maximum entropy light source placement. In: Proc. of the Visualization 2002 Conference, 275-282. IEEE Computer Society Press (2002)Google Scholar
  7. 7.
    Iserhardt-Bauer, S., Hastreiter, P., Tom, B., Kötner, N., Schempershofe, M., Nissen, U., Ertl, T.: Standardized analysis of intracranial aneurysms using digital video sequences. In: In Proceedings Medical Image Computing and Computer Assisted Intervention, 411-418. MICCAI, Springer (2002)Google Scholar
  8. 8.
    Ji, G., Shen, H.W.: Dynamic view selection for time-varying volumes. IEEE Transactions on Visualization and Computer Graphics 12(5), 1109-1116 (2006)CrossRefGoogle Scholar
  9. 9.
    Lan, Y., Harvey, R.: Image classification using compression distance. In: Proceedings of the 2nd International Conference on Vision, Video and Graphics, 173-180 (2005)Google Scholar
  10. 10.
    Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.: The similarity metric. IEEE Transactions Informmation Theory 50(12), 3250-3264 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, M., Vitanyi, P.M.: An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag, Berlin (1993)zbMATHGoogle Scholar
  12. 12.
    Li, M., Zhu, Y.: Image classification via lz78 based string kernel: A comparative study. In: PAKDD, 704-712 (2006)Google Scholar
  13. 13.
    Macedonas, A., Besiris, D., Economou, G., Fotopoulos, S.: Dictionary based color image retrieval. J. Vis. Comun. Image Represent.19(7), 464-470 (2008)CrossRefGoogle Scholar
  14. 14.
    Mühler, K., Neugebauer, M., Tietjen, C., Preim, B.: Viewpoint selection for intervention planning. In: EG/ IEEE-VGTC Symposium on Visualization, 267-274 (2007)Google Scholar
  15. 15.
    Patow, G., Pueyo, X.: A survey on inverse rendering problems. Computer Graphics Forum 22 (4),663-687 (2003)Google Scholar
  16. 16.
    Plemenos, D., Benayada, M.: Intelligent display in scene modeling. new techniques to automatically compute good views. In: Proc. International Conference GRAPHICON’96Google Scholar
  17. 17.
    Polonsky, O., Patanè, G., Biasotti, S., Gotsman, C., Spagnuolo, M.: What’s in an image? The Visual Computer 21(8-10), 840-847 (2005)Google Scholar
  18. 18.
    Sbert, M., Plemenos, D., Feixas, M., Gonzalez, F.: Viewpoint quality: Measures and applications. In: L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (eds.) Computational Aesthetics in Graphics, Visualization and Imaging, 185-192. EuroGraphics Digital Library (2005)Google Scholar
  19. 19.
    Shacked, R., Lischinski, D.: Automatic lighting design using a perceptual quality metric. Computer Graphics Forum (Proceedings of Eurographics 2001) 20(3), C-215-226Google Scholar
  20. 20.
    Starck, J., Murtagh, F., Pirenne, B., Albrecht, M.: Astronomical image compression based on noise suppression. Publications of the Astronomical Society of the Pacific 108, 446-455 (1998)CrossRefGoogle Scholar
  21. 21.
    Takahashi, S., Fujishiro, I., Takeshima, Y., Nishita, T.: A feature-driven approach to locating optimal viewpoints for volume visualization. In: IEEE Visualization, 495-502 (2005)Google Scholar
  22. 22.
    Tao, Y., Lin, H., Bao, H., Dong, F., Clapworthy, G.: Structure-aware viewpoint selection for volume visualization. Visualization Symposium, IEEE Pacific 0, 193-200 (2009)Google Scholar
  23. 23.
    Vázquez, P.: Automatic light source placement for maximum illumination information recovery. Computer Graphics Forum 26(2), 143-156 (2007)Google Scholar
  24. 24.
    Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: Proceedings of the Vision Modeling and Visualization Conference (VMV-01), 273-280. Stuttgart (2001)Google Scholar
  25. 25.
    Vázquez, P.P., Monclús, E., Navazo, I.: Representative views and paths for volume models. In: SG’08: Proceedings of the 9th international symposium on Smart Graphics, 106-117. Springer-Verlag, Berlin, Heidelberg (2008)Google Scholar
  26. 26.
    Viola, I., Feixas, M., Sbert, M., Gröller, M.E.: Importance-driven focus of attention. IEEE Transactions on Visualization and Computer Graphics 12(5), 933-940 (2006)Google Scholar
  27. 27.
    Wang, Y., Zhou, D., Zheng, Y., Wang, K., Yang, T.: Viewpoint selection using PSO algorithms for volume rendering. In: IMSCCS ’07: Proceedings of the Second International Multi-Symposiums on Computer and Computational Sciences, 286-291. IEEE Computer Society, Washington, DC, USA (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eva Monclús
    • 1
  • Pere-Pau Vázquez
    • 1
  • Isabel Navazo
    • 1
  1. 1.Modeling, Visualization, and Graphics Interaction GroupDep. LSI, Universitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations