Advertisement

Discrete Distortion for 3D Data Analysis

  • Leila De Floriani
  • Federico Iuricich
  • Paola Magillo
  • Mohammed Mostefa Mesmoudi
  • Kenneth Weiss
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

We investigate a morphological approach to the analysis and understanding of three-dimensional scalar fields, and we consider applications to 3D medical and molecular images as examples.We consider a discrete model of the scalar field obtained by discretizing its 3D domain into a tetrahedral mesh. In particular, our meshes correspond to approximations at uniform or variable resolution extracted from a multi-resolution model of the 3D scalar field, that we call a hierarchy of diamonds. We analyze the images based on the concept of discrete distortion, that we have introduced in [26], and on segmentations based on Morse theory. Discrete distortion is defined by considering the graph of the discrete 3D field, which is a tetrahedral hypersurface in R 4, and measuring the distortion of the transformation which maps the tetrahedral mesh discretizing the scalar field domain into the mesh representing its graph in R 4. We describe a segmentation algorithm to produce Morse decompositions of a 3D scalar field which uses a watershed approach and we apply it to 3D images by using as scalar field both intensity and discrete distortion. We present experimental results by considering the influence of resolution on distortion computation. In particular, we show that the salient features of the distortion field appear prominently in lower resolution approximations to the dataset.

Keywords

Priority Queue Morse Theory Morse Function Tetrahedral Mesh Distortion Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Aleksandrov. Combinatorial Topology. Dover Publications Inc., 1998.Google Scholar
  2. 2.
    M. T. Anderson. G éom étrisation des Vari ét és de Dimension 3 via le Flot de Ricci. Soci ét é Math ématique de France, Gazette, 103:25-40, 2005.Google Scholar
  3. 3.
    E. J. Ansari, N. andE Delp. On detecting dominant points. Pattern Recognition, 24(5):441-451,1991.Google Scholar
  4. 4.
    W. Beil, K. Rohr, and H. S. Stiehl. Investigation of approaches for the localization of anatomical landmarks in 3d medical images. Computer Assisted Radiology and Surgery, CARS, Berlin, Germany, 265-270, 1997.Google Scholar
  5. 5.
    J. Bey. Tetrahedral mesh refinement. Computing, 55:355-378, 1995.MathSciNetzbMATHGoogle Scholar
  6. 6.
    S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, and M. Spagnuolo. Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv., 4(40), 2008.Google Scholar
  7. 7.
    L. Comic and L. De Floriani. Cancellation of critical points in 2d and 3d Morse and Morse-Smale complexes. In 14th IAPR International Conference on Discrete Geometry for Computer Imagery, volume 4992 of Lecture Notes in Computer Science, 117-128, Lyon, France, 16-18 April 2008.Google Scholar
  8. 8.
    L. De Floriani and P. Magillo. Multiresolution mesh representation: models and data structures. In M. Floater, A. Iske, and E. Quak, editors, Principles of Multi-resolution Geometric Modeling, Lecture Notes in Mathematics, 364-418, Berlin, 2002. Springer Verlag.Google Scholar
  9. 9.
    N. Dyn, K. Hormann, K. Sun-Jeong, and D. Levin. Optimizing 3d triangulations using discrete curvature analysis. In T. Lyche and L. Schumaker, editors, Mathematical Methods for Curves and Surfaces: Oslo 2000, 135-146, 2000.Google Scholar
  10. 10.
    H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale complexes for piece-wise linear 3-manifolds. In Proceedings 19th ACM Symposium on Computational Geometry, 361-370, 2003.Google Scholar
  11. 11.
    E. Fatemizadeh, C. Lucas, and H. Soltanian-Zadeh. Automatic landmark extraction from image data using modified growing neural gas network. IEEE Transactions on Information Technology in Biomedicine, 7(2):77-85, 2003.CrossRefGoogle Scholar
  12. 12.
    T. Gatzke and C. Grimm. Estimating curvature on triangular meshes. International Journal on shape Modeling, 12:1-29, 2006.CrossRefzbMATHGoogle Scholar
  13. 13.
    T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based on tetrahedral bisection. In Proceedings Symposium on Volume Visualization, 267-278. ACM Press, 1999.Google Scholar
  14. 14.
    B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. Interactive view-dependent rendering of large isosurfaces. In Proceedings IEEE Visualization, 475-484, 2002.Google Scholar
  15. 15.
    A. Gyulassy, P. Bremer, B. Hamann, and V. Pascucci. A practical approach to Morse-Smale complex computation: Scalability and generality. IEEE Transactions on Visualization and Computer Graphics, 14(6):1619-1626, 2008.CrossRefGoogle Scholar
  16. 16.
    A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann. Topology-based simplification for feature extraction from 3d scalar fields. In Proceedings, IEEE Visualization 2005,275-280, October 2005.Google Scholar
  17. 17.
    A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. (IEEE Visualization 2007), 6(13):1440-1447, 2007.Google Scholar
  18. 18.
    S. Hahmann, A. Belayev, L. Busé, G. Elber, B. Mourrain, and C. Rössl. Shape Interrogation. L. De Floriani, M. Spagnuolo (Eds.), Shape Analysis and Structuring (Mathematics+Visualization), 2009.Google Scholar
  19. 19.
    T. Hartkens, K. Rohr, and H. Stiehl. Evaluation of 3d operators for the detection of anatomical point landmarks in MR and CT images. ComputerVision and Image Understanding, 86(2):118-136,2002.Google Scholar
  20. 20.
    D. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Symbolic Computation, 17(5):457-472, May 1994.Google Scholar
  21. 21.
    A. Kimura, Y. Takama, Y. Yamazoe, S. Tanaka, and H. Tanaka. Parallel volume segmentation with tetrahedral adaptive grid. International Conference on Pattern Recognition, 2:281-286,2004.Google Scholar
  22. 22.
    M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in hierarchical tetrahedral meshes. In Proceedings International Conference on Shape Modeling, 286-295,Genova, Italy, May 2001. IEEE Computer Society.Google Scholar
  23. 23.
    J. M. Maubach. Local bisection refinement for n-simplicial grids generated by reflection. SIAM Journal on Scientific Computing, 16(1):210-227, January 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    V. Mello, L. Velho, and G. Taubin. Estimating the in/out function of a surface represented by points. In Symposium on Solid Modeling and Applications, 108-114, 2003.Google Scholar
  25. 25.
    M. M. Mesmoudi, L. De Floriani, and P. Magillo. Morphological analysis of terrains based on discrete curvature and distortion. In Proceedings of International Conference on Advances in Geographic Information Systems (ACMGIS 2008), Irvine, California, USA, 2008.Google Scholar
  26. 26.
    M. M. Mesmoudi, L. De Floriani, and U. Port. Discrete distortion in triangulated 3-manifolds. Computer Graphics Forum (Proceedings SGP 2008), 27(5):1333-1340, 2008.Google Scholar
  27. 27.
    J. Milnor. Morse Theory. Princeton University Press, 1963.Google Scholar
  28. 28.
    V. Natarajan, Y. Wang, P. Bremer, V. Pascucci, and B. Hamann. Segmenting molecular surfaces. Computer Aided Geometric Design, 23(6):495-509, 2006.Google Scholar
  29. 29.
    M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on nested grids. Computing, 56(4):365-385, 1997.Google Scholar
  30. 30.
    V. Pascucci. Slow Growing Subdivisions (SGS) in any dimension: towards removing the curse of dimensionality. Computer Graphics Forum, 21(3):451-460, 2002.CrossRefGoogle Scholar
  31. 31.
    S. C. Pei and C. Lin. The detection of dominant points on digital curves byscale-space filtering. Pattern Recognition, 25(11):1307-1314, 1992.Google Scholar
  32. 32.
    T. Regge. General relativity without coordinates. Nuovo Cimento, 19(3):558-571, 1961.MathSciNetGoogle Scholar
  33. 33.
    M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-Beltrami spectra as “Shape-DNA” of surfaces and solids. Computer-Aided Design, 38:342-366, 2006.CrossRefGoogle Scholar
  34. 34.
    M. Rivara and C. Levin. A 3D refinement algorithm suitable for adaptive and multigrid techniques. Communications in Applied Numerical Methods, 8(5):281-290, 1992.CrossRefzbMATHGoogle Scholar
  35. 35.
    J. Roerdink and A. Meijster. The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae, 41:187-228, 2000.MathSciNetzbMATHGoogle Scholar
  36. 36.
    H. Samet. Foundations of Multidimensional and Metric Data Structures. The Morgan Kaufmann series in computer graphics and geometric modeling. Morgan Kaufmann, 2006.Google Scholar
  37. 37.
    A. Shamir. Segmentation and shape extraction of 3d boundary meshes. In EG 2006 - State of the Art Reports, Vienna, 2006.Google Scholar
  38. 38.
    T. Surazhsky, E. Magid, O. Soldea, G. Elber, and E. Rivlin. A comparison of gaussian and mean curvatures estimation methods on triangular meshes. In Proceedings of Conference on Robotics and Automation, Proceedings. ICRA ’03. IEEE International, volume 1, 739-743, 2003.Google Scholar
  39. 39.
    C. Teh and R. T. Chin. On the detection of dominant points on digital curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8):859-872, 1989.CrossRefGoogle Scholar
  40. 40.
    M. Troyanov. Les surfaces Euclidiennes à singularités coniques. L’enseignement Mathématique, 32:79-94, 1986.Google Scholar
  41. 41.
    L. Vincent and P. Soille. Watershed in digital spaces: an efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):583-598, 1991.Google Scholar
  42. 42.
    K. Weiss and L. De Floriani. Diamond hierarchies of arbitrary dimension. Computer Graphics Forum (Proceedings SGP 2009), 28(5):1289-1300, 2009.Google Scholar
  43. 43.
    K. Weiss and L. De Floriani. Supercubes: A high-level primitive for diamond hierarchies. IEEE Transactions on Visualization and Computer Graphics (Proceedings IEEE Visualization 2009), 15 (6):1603-1610, 2009.Google Scholar
  44. 44.
    K. Weiss and L. De Floriani. Simplex and diamond hierarchies: Models and applications. In H. Hauser and E. Reinhard, editors, EG 2010 - State of the Art Reports, 113-136, Norrköping, Sweden, 2010. Eurographics Association.Google Scholar
  45. 45.
    K. Weiss, M. Mesmoudi, and L. De Floriani. Multiresolution analysis of 3D images based on discrete distortion. In International Conference on Pattern Recognition (ICPR), 4093-4096, Istanbul, Turkey, 2010.Google Scholar
  46. 46.
    Y. Zhou, B. Chen, and A. Kaufman. Multi-resolution tetrahedral framework for visualizing regular volume data. In R. Yagel and H. Hagen, editors, Proceedings IEEE Visualization, 135-142, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Leila De Floriani
    • 1
  • Federico Iuricich
    • 1
  • Paola Magillo
    • 1
  • Mohammed Mostefa Mesmoudi
    • 1
    • 3
  • Kenneth Weiss
    • 2
  1. 1.Department of Computer Science and Information Science (DISI)University of Genova, ItalyGenovaItaly
  2. 2.Department of Computer ScienceUniversity of MarylandMDUSA
  3. 3.Labo. Pure and Appl. Math. UMABUniversity of MostaganemMostaganemAlgeria

Personalised recommendations