Performance Visualization for Large-Scale Computing Systems: A Literature Review

  • Qin Gao
  • Xuhui Zhang
  • Pei-Luen Patrick Rau
  • Anthony A. Maciejewski
  • Howard Jay Siegel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6761)

Abstract

Recently the need for extreme scale computing solutions presents demands for powerful and easy to use performance visualization tools. This paper presents a review of existing research on performance visualization for large-scale systems. A general approach to performance visualization is introduced in relation to performance analysis, and issues that need to be addressed throughout the performance visualization process are summarized. Then visualization techniques from 21 performance visualization systems are reviewed and discussed, with the hope of shedding light on the design of visualization tools for ultra-large systems.

Keywords

performance visualization performance monitoring information visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roman, G.C., Cox, K.C.: A taxonomy of program visualization systems. Computer 26, 11–24 (2002)CrossRefGoogle Scholar
  2. 2.
    Heath, M., Etheridge, J.: Visualizing the performance of parallel programs. IEEE Software 8, 29–39 (1991)CrossRefGoogle Scholar
  3. 3.
    Card, S.: Information visualization. In: The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications, pp. 509–543 (2002)Google Scholar
  4. 4.
    Rover, D.T.: A performance visualization paradigm for data parallel computing. In: Twenty-Fifth Hawaii Int. Conf. System Sciences, pp. 149–160 (2002)Google Scholar
  5. 5.
    Simon, H., Zacharia, H., Steven, R.: Modeling and simulation at the exascale for energy and the environment. Technical report, Department of Energy (2007)Google Scholar
  6. 6.
    Shestak, V., Smith, J., Maciejewski, A.A., Siegel, H.J.: Stochastic robustness metric and its use for static resource allocations. Journal of Parallel and Distributed Computing 68, 1157–1173 (2008)CrossRefMATHGoogle Scholar
  7. 7.
    Ali, S., Maciejewski, A.A., Siegel, H.J., Kim, J.K.: Measuring the robustness of a resource allocation. IEEE Trans. Parallel and Distributed Systems 15, 630–641 (2004)CrossRefGoogle Scholar
  8. 8.
    Miller, B.P.: What to draw? When to draw? An essay on parallel program visualization. Journal of Parallel and Distributed Computing 18, 265–269 (1993)CrossRefGoogle Scholar
  9. 9.
    Yan, J., Sarukkai, S., Mehra, P.: Performance measurement, visualization and modeling of parallel and distributed programs using the AIMS toolkit. Software Practice & Experience 25, 429–461 (1995)CrossRefGoogle Scholar
  10. 10.
    Tufte, E.R.: Envisioning Information. Graphics Press, Cheshire (1990)Google Scholar
  11. 11.
    Kraemer, E., Stasko, J.T.: The visualization of parallel systems: An overview. Journal of Parallel and Distributed Computing 18, 105–117 (1993)CrossRefGoogle Scholar
  12. 12.
    Koehler, S., Curreri, J., George, A.D.: Performance analysis challenges and framework for high-performance reconfigurable computing. Parallel Computing 34, 217–230 (2008)CrossRefGoogle Scholar
  13. 13.
    Shaffer, E., Reed, D.A., Whitmore, S., Schaeffer, B.: Virtue: Performance visualization of parallel and distributed applications. Computer 32, 44–51 (2002)CrossRefGoogle Scholar
  14. 14.
    Sarukkai, S.R., Gannon, D.: Parallel program visualization using SIEVE.1. In: 6th Int. Conf. Supercomputing - ICS 1992, pp. 157–166 (1992)Google Scholar
  15. 15.
    De Kergommeaux, J.C., Stein, B., Bernard, P.E.: Pajé, an interactive visualization tool for tuning multi-threaded parallel applications. Parallel Computing 26, 1253–1274 (2000)CrossRefMATHGoogle Scholar
  16. 16.
    De Rose, L., Reed, D.: SvPablo: A multi-language architecture-independent performance analysis system. In: 1999 Int. Conf. Parallel Processing, pp. 311–318 (1999) Google Scholar
  17. 17.
    Alexandrov, A., Armstrong, D., Rajic, H., Voss, M., Hayes, D.: High-level performance modeling of task-based algorithms. In: Int. Symp. Performance Analysis of Systems and Software (ISPASS), pp. 184–193 (2010) Google Scholar
  18. 18.
    Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic, K.L., Kunchithapadam, K., Newhall, T.: The Paradyn parallel performance measurement tool. Computer 28, 37–46 (1995)CrossRefGoogle Scholar
  19. 19.
    Bates, P.C.: Debugging heterogeneous distributed systems using event-based models of behavior. ACM Trans. Computer Systems (TOCS) 13, 1–31 (1995)CrossRefGoogle Scholar
  20. 20.
    Garcia, J., Entrialgo, J., Garcia, D.F., Diaz, J.L., Suarez, F.J.: PET, a software monitoring toolkit for performance analysis of parallel embedded applications. Journal of Systems Architecture 48, 221–235 (2003)CrossRefGoogle Scholar
  21. 21.
    Nagel, W.E., Arnold, A., Weber, M., Nagel, W.E., Arnold, A., Weber, M., Solchenbach, K.: VAMPIR: Visualization and Analysis of MPI Resources. Supercomputer 12, 69–80 (1996)Google Scholar
  22. 22.
    Karavanic, K.L., Myllymaki, J., Livny, M., Miller, B.P.: Integrated visualization of parallel program performance data. Parallel Computing 23, 181–198 (1997)CrossRefMATHGoogle Scholar
  23. 23.
    De Kergommeaux, C., Stein, B.D.O.: Flexible performance visualization of parallel and distributed applications. Future Generation Computer Systems 19, 735–747 (2003)CrossRefGoogle Scholar
  24. 24.
    Ariel, A., Fung, W.W., Turner, A.E., Aamodt, T.M.: Visualizing complex dynamics in many-core accelerator architectures. In: Int. Symp. Performance Analysis of Systems and Software (ISPASS), pp. 164–174 (2010)Google Scholar
  25. 25.
    Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and analyze parallel code. Transputer and Occam Developments, WOTUG-18, pp. 17–31 (1995) Google Scholar
  26. 26.
    Dongarra, J., Brewer, O., Kohl, J.A., Fineberg, S.: A tool to aid in the design, implementation, and understanding of matrix algorithms for parallel processors. Journal of Parallel and Distributed Computing 9, 185–202 (1990)CrossRefGoogle Scholar
  27. 27.
    Socha, D., Bailey, M.L., Notkin, D.: Voyeur: Graphical views of parallel programs. 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging - PADD 1988. pp. 206–215 (1988)Google Scholar
  28. 28.
    Haynes, R., Crossno, P., Russell, E.: A visualization tool for analyzing cluster performance data. In: 2001 IEEE Int. Conf. Cluster Computing (CLUSTER 2001), pp. 295–302 (2001)Google Scholar
  29. 29.
    Schnorr, L.M., Huard, G., Navaux, P.O.: Triva: Interactive 3D visualization for performance analysis of parallel applications. Future Generation Computer Systems 26, 348–358 (2010)CrossRefGoogle Scholar
  30. 30.
    Brown, J.A., McGregor, A.J., Braun, H.W.: Network performance visualization: Insight through animation. In: Passive and Active Measurement Workshop, pp. 33–41 (2002)Google Scholar
  31. 31.
    Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone Trees: Animated 3D visualizations of hierarchical information. In: SIGCHI Conf. Human Factors in Computing Systems: Reaching Through Technology, pp. 189–194 (1991)Google Scholar
  32. 32.
    Kim, Y.J., Lim, J.S., Jun, Y.K.: Scalable thread visualization for debugging data races in OpenMP programs. In: Cérin, C., Li, K.-C. (eds.) GPC 2007. LNCS, vol. 4459, pp. 310–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    De Kergommeaux, J., De Oliveira Stein, B.: Pajé: an extensible environment for visualizing multi-threaded programs executions. In: 6th Int. Euro-Par Conf. Parallel Processing, pp. 133–140 (2000)Google Scholar
  34. 34.
    Knüpfer, A., Voigt, B., Nagel, W., Mix, H.: Visualization of repetitive patterns in event traces. In: Workshop State-of-the-Art in Scientific & Parallel Computing, pp. 430–439 (2007)Google Scholar
  35. 35.
    Johnson, B., Shneiderman, B.: Tree-Maps: A space-filling approach to the visualization of hierarchical information structures. In: 2nd Conf. Visualization 1991, pp. 284–291 (1991) Google Scholar
  36. 36.
    Heisig, S.: Treemaps for workload visualization. IEEE Computer Graphics and Applications 23, 60–67 (2003)CrossRefGoogle Scholar
  37. 37.
    Goldberg, J.H., Helfman, J.I.: Enterprise network monitoring using treemaps. In: 49th Annual Meeting of the Human Factors and Ergonomics Society, pp. 671–675 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Qin Gao
    • 1
  • Xuhui Zhang
    • 1
  • Pei-Luen Patrick Rau
    • 1
  • Anthony A. Maciejewski
    • 2
  • Howard Jay Siegel
    • 2
    • 3
  1. 1.Department of Industrial EngineeringTsinghua UniversityBeijingP.R. China
  2. 2.Electrical and Computer Engineering DepartmentColorado State UniversityFort CollinsUSA
  3. 3.Computer Science DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations