Coalition Resistant Anonymous Broadcast Encryption Scheme Based on PUF

  • Łukasz Krzywiecki
  • Mirosław Kutyłowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6740)


We describe a broadcast encryption system with revocation, where security is based on PUF (Physical Unclonable Function) instead of a cryptographic problem. Our scheme is immune to advances of cryptography (which may suddenly ruin any system depending solely of cryptographic assumptions). It is resilient to collusion attacks, which are frequently the Achilles’ heel of schemes based on cryptography. It provides a high level of privacy protection of the users. On the downside, it requires memory modules as well as time consuming initialization of PUFs by the broadcaster. Security of the scheme is based on the assumption of randomness of PUF’s output and their unclonability.


key broadcasting exclusion protocol anonymity PUF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297, 2026–2030 (2002), (cited on page 49)
  2. 2.
    Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random functions. In: Atluri, V. (ed.) ACM Conference on Computer and Communications Security, pp. 148–160. ACM, New York (2002) (cited on page 49) Google Scholar
  3. 3.
    Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Fpga intrinsic pufs and their use for ip protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007) (cited on page 49)CrossRefGoogle Scholar
  4. 4.
    Gassend, B.: Physical Random Functions. Master’s thesis. MIT, USA (2003) (cited on page 49)Google Scholar
  5. 5.
    Pappu, R.S.: Physical one-way functions. PhD thesis, Massachusetts Institute of Technology (2001), (cited on page 49)
  6. 6.
    Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security, pp. 237–249. ACM, New York (2010) (cited on page 49)Google Scholar
  7. 7.
    Tuyls, P., Škorić, B.: Strong authentication with physical unclonable functions. In: Security, Privacy, and Trust in Modern Data Management, pp. 133–148 (2007) (cited on page 49)Google Scholar
  8. 8.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994) (cited on page 50)CrossRefGoogle Scholar
  9. 9.
    Tzeng, W.-G., Tzeng, Z.-J.: A public-key traitor tracing scheme with revocation using dynamic shares. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 207–224. Springer, Heidelberg (2001) (cited on page 50)CrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revoking. In: PODC, pp. 190–199 (2003) (cited on page 50)Google Scholar
  11. 11.
    Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002) (cited on page 50)CrossRefGoogle Scholar
  12. 12.
    Kim, C.H., Hwang, Y.-H., Lee, P.J.: Practical pay-TV scheme using traitor tracing scheme for multiple channels. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 264–277. Springer, Heidelberg (2005) (cited on page 50)CrossRefGoogle Scholar
  13. 13.
    Cichoń, J., Krzywiecki, Ł., Kutyłowski, M., Wlaź, P.: Anonymous distribution of encryption keys in cellular broadcast systems. In: Burmester, M., Yasinsac, A. (eds.) MADNES 2005. LNCS, vol. 4074, pp. 96–109. Springer, Heidelberg (2006) (cited on page 50)CrossRefGoogle Scholar
  14. 14.
    Krzywiecki, Ł., Kubiak, P., Kutyłowski, M.: A revocation scheme preserving privacy. In: Lipmaa, H., Yung, M., Lin, D. (eds.) Inscrypt 2006. LNCS, vol. 4318, pp. 130–143. Springer, Heidelberg (2006) (cited on page 50)CrossRefGoogle Scholar
  15. 15.
    Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006) (cited on page 50)CrossRefGoogle Scholar
  16. 16.
    Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM J. Comput. 29(1), 180–200 (1999) (cited on pages 57 and 58)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: The heavily loaded case. SIAM J. Comput. 35(6), 1350–1385 (2006) (cited on page 57)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Vöcking, B.: How asymmetry helps load balancing. J. ACM 50(4), 568–589 (2003) (cited on page 58)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Łukasz Krzywiecki
    • 1
  • Mirosław Kutyłowski
    • 1
  1. 1.Institute of Mathematics and Computer ScienceWrocław University of TechnologyPoland

Personalised recommendations