Advertisement

Color Image Compression Using Fast VQ with DCT Based Block Indexing Method

  • Loay E. George
  • Azhar M. Kadim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6754)

Abstract

In this paper, a Vector Quantization compression scheme based on block indexing is proposed to compress true color images. This scheme uses affine transform to represent the blocks of the image in terms of the blocks of the code book. In this work a template image rich with high contrast areas is used as a codebook to approximately represent the blocks of the compressed image. A time reduction was achieved due to the usage of block descriptors to index the images blocks, these block descriptors are derived from the discrete cosine transform (DCT) coefficients. The DCT bases descriptor is affine transform invariant. This descriptor is used to filter out the domain blocks, and make matching only with similar indexed blocks. This introduced method led to time (1.13sec), PSNR (30.09), MSE (63.6) and compression ratio (7.31) for Lena image (256×256, 24bits).

Keywords

Image Compression DCT Fractal Image Compression IFS Isometric Processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kekre, H.B., Sarode, K.: Vector Quantized Codebook Optimization using K-Means. International Journal on Computer Science and Engineering 3, 283–290 (2009)Google Scholar
  2. 2.
    Gonzalez, R.F., Woods, R.E.: Digital Image Processing, 2nd edn. Pearson Education International, Prentic Hall, Inc. (2002)Google Scholar
  3. 3.
  4. 4.
    Colvin, J.: Iterated Function Systems and Fractal Image Compression: kd4syw@usit.net (1996)Google Scholar
  5. 5.
    Fisher, Y.: Fractal Image Compression. In: SIGARAPH 1992 Course Notes, the San Diego Super Computer Center. University of California, San Diego (1992)Google Scholar
  6. 6.
    Hamzaoui, R., Muller, M., Saupe, D.: Enhancing Fractal Image Compression with Vector Quantization. In: Proc. DSPWS (1996)Google Scholar
  7. 7.
    Hamzaoui, R., Saupe, D.: Combining fractal image compression and vector quantization. IEEE Transactions on Image Processing 9(2), 197–208 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Nixon, M.S., Aguada, A.S.: Feature Extraction and Image Processing:an imrint of Elsevier. British Library Cataloguing in publishing Data, pp. 57–58 (2005) ISBN 0-7506-5078-8Google Scholar
  9. 9.
    George, L.: Eman Al-Hilo:Spedding-Up Color FIC Using Isometric Process Based on moment predictor. In: International Conference on Future Computer and Communication, pp. 607–611. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  10. 10.
    Duh, D.J., Jeng, J.H., Chen, S.Y.: Speed QualityControl for Fractal Image Compression. Imaging Science Journal 56(2), 79–90 (2008)CrossRefGoogle Scholar
  11. 11.
    George, L.: IFS Coding for Zero-Mean Image Blocks. Iraqi Journal of Science 47(1) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Loay E. George
    • 1
  • Azhar M. Kadim
    • 2
  1. 1.Dept. of Computer ScienceBaghdad UniversityBaghdadIraq
  2. 2.Dept. of Computer ScienceAl-Nahrain UniversityBaghdadIraq

Personalised recommendations