Advertisement

Measuring the Coverage of Interest Point Detectors

  • Shoaib Ehsan
  • Nadia Kanwal
  • Adrian F. Clark
  • Klaus D. McDonald-Maier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6753)

Abstract

Repeatability is widely used as an indicator of the performance of an image feature detector but, although useful, it does not convey all the information that is required to describe performance. This paper explores the spatial distribution of interest points as an alternative indicator of performance, presenting a metric that is shown to concur with visual assessments. This metric is then extended to provide a measure of complementarity for pairs of detectors. Several state-of-the-art detectors are assessed, both individually and in combination. It is found that Scale Invariant Feature Operator (SFOP) is dominant, both when used alone and in combination with other detectors.

Keywords

Feature extraction coverage performance measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding 110, 346–359 (2008)CrossRefGoogle Scholar
  3. 3.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. In: BMVC, Cardiff, UK, pp. 384–393 (2002)Google Scholar
  4. 4.
    Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Tuytelaars, T., Mikolajczyk, K.: Local Invariant Feature Detectors: A Survey. Foundations and Trends in Computer Graphics and Vision 3, 177–280 (2007)CrossRefGoogle Scholar
  6. 6.
    Forstner, W., Dickscheid, T., Schindler, F.: Detecting Interpretable and Accurate Scale-Invariant Keypoints. In: ICCV, Kyoto, Japan, pp. 2256–2263 (2009) Google Scholar
  7. 7.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of Interest Point Detectors. International Journal of Computer Vision 37, 151–172 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ehsan, S., Kanwal, N., Clark, A., McDonald-Maier, K.: Improved Repeatability Measures for Evaluating Performance of Feature Detectors. Electronics Letters 46, 998–1000 (2010)CrossRefGoogle Scholar
  9. 9.
    Nowak, E., Jurie, F., Triggs, B.: Sampling Strategies for Bag-of-Features Image Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Perdoch, M., Matas, J., Obdrzalek, S.: Stable Affine Frames on Isophotes. In: ICCV, Rio deJaneiro, Brazil (2007)Google Scholar
  11. 11.
    Tuytelaars, T.: Dense Interest Points. In: CVPR, San Francisco, USA, pp. 2281–2288 (2010) Google Scholar
  12. 12.
    Dickscheid, T., Förstner, W.: Evaluating the Suitability of Feature Detectors for Automatic Image Orientation Systems. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 305–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Dickscheid, T., Schindler, F., Förstner, W.: Coding Images with Local Features. International Journal of Computer Vision (2010), doi: 10.1007/s11263-010-0340-z Google Scholar
  14. 14.
    Lazebnik, S., Schmid, C., Ponce, J.: Sparse Texture Representation using Affine-Invariant Neighborhoods. In: IEEE CVPR, Wisconsin, USA, pp. 319–324 (June 2003)Google Scholar
  15. 15.
    Mikolajczyk, K., Leibe, B., Schiele, B.: Multiple Object Class Detection with a Generative Model. In: IEEE CVPR, New York, USA, pp. 26–36 (2006)Google Scholar
  16. 16.
    Sivic, J., Zisserman, A.: Video Google: A Text Retrieval Approach to Object Matching in Videos. In: ICCV, Nice, France, vol. 2, pp. 1470–1477 (2003)Google Scholar
  17. 17.
    Zhang, B., Hsu, M., Dayal, U.: K-Harmonic Means-A Spatial Clustering Algorithm with Boosting. In: Roddick, J., Hornsby, K.S. (eds.) TSDM 2000. LNCS (LNAI), vol. 2007, pp. 31–45. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shoaib Ehsan
    • 1
  • Nadia Kanwal
    • 1
  • Adrian F. Clark
    • 1
  • Klaus D. McDonald-Maier
    • 1
  1. 1.School of Computer Science & Electronic EngineeringUniversity of EssexColchesterUK

Personalised recommendations