Scratching the Scale Labyrinth

  • Andrew J. Milne
  • Martin Carlé
  • William A. Sethares
  • Thomas Noll
  • Simon Holland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6726)

Abstract

In this paper, we introduce a new approach to computer-aided microtonal improvisation by combining methods for (1) interactive scale navigation, (2) real-time manipulation of musical patterns and (3) dynamical timbre adaption in solidarity with the respective scales. On the basis of the theory of well-formed scales we offer a visualization of the underlying combinatorial ramifications in terms of a scale labyrinth. This involves the selection of generic well-formed scales on a binary tree (based on the Stern-Brocot tree) as well as the choice of specific tunings through the specification of the sizes of a period (pseudo-octave) and a generator (pseudo-fifth), whose limits are constrained by the actual position on the tree. We also introduce a method to enable transformations among the modes of a chosen scale (generalized and refined “diatonic” and “chromatic” transpositions). To actually explore the scales and modes through the shaping and transformation of rhythmically and melodically interesting tone patterns, we propose a playing technique called Fourier Scratching. It is based on the manipulation of the “spectra” (DFT) of playing gestures on a sphere. The coordinates of these gestures affect score and performance parameters such as scale degree, loudness, and timbre. Finally, we discuss a technique to dynamically match the timbre to the selected scale tuning.

Keywords

MOS Scales Well-Formed Scales Diatonic Chromatic Stern-Brocot Tree Farey Sequence Fourier Scratching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carey, N.: Distribution Modulo 1 and Musical Scales. Ph.D Dissertation, University of Rochester (1998)Google Scholar
  2. 2.
    Milne, A.J., Sethares, W.A., Plamondon, J.: Tuning Continua and Keyboard Layouts. J. of Math. Music 2, 1–19 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Wilson, E.: Scale-tree, Peirce Sequence (1994), http://www.anaphoria.com/sctree.PDF
  4. 4.
  5. 5.
    Carey, N., Clampitt, D.: Aspects of Well-formed Scales. Music Theory Spectrum 11, 187–206 (1989)CrossRefGoogle Scholar
  6. 6.
    Clough, J., Engebretsen, N., Kochavi, J.: Scales, Sets, and Interval Cycles: A Taxonomy. Music Theory Spectrum 21, 74–104 (1999)CrossRefGoogle Scholar
  7. 7.
    Balzano, G.J.: The Pitch Set as a Level of Description for Studying Musical Perception. In: Clynes, N. (ed.) Music, Mind, and Brain. Plenum Press, New York (1982)Google Scholar
  8. 8.
    Carey, N.: Coherence and Sameness in Well-formed and Pairwise Well-formed Scales. J. of Math. Music 2, 79–98 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Erlich, P.: A Middle Path Between Just Intonation and the Equal Temperaments, Part 1. Xenharmonikôn 18, 159–199 (2006)Google Scholar
  10. 10.
    Sethares, W.A., Milne, A.J., Tiedje, S., Prechtl, A., Plamondon, J.: Spectral Tools for Dynamic Tonality and Audio Morphing. Comput. Music J. 33, 71–84 (2009)CrossRefGoogle Scholar
  11. 11.
    Balzano, G.J.: The Group-theoretic Description of 12-fold and Microtonal Pitch Systems. Comput. Music J. 4, 66–84 (1980)CrossRefGoogle Scholar
  12. 12.
    Rothenberg, D.: A Model for Pattern Perception with Musical Applications. Math. Systems Theory 11, 199–234 (1978)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Blackwood, E.: Structure of Recognizable Diatonic Tunings. Princeton University Press, Princeton (1985)Google Scholar
  14. 14.
    Stern, M.A.: Über eine Zahlentheoretische. Funktion 55, 193–220 (1858)Google Scholar
  15. 15.
    Brocot, A.: Calcul des Rouages par Approximation Nouvelle Methode. Revue Chronometrique 6, 186–194 (1860)Google Scholar
  16. 16.
    Lewin, D.: Re: Intervallic Relations between Two Collections of Notes. J. of Music Theory 3, 298–301 (1959)CrossRefGoogle Scholar
  17. 17.
    Quinn, I.: A Unified Theory of Chord Quality in Equal Temperaments. Ph.D. Dissertation, Eastman School of Music (2004)Google Scholar
  18. 18.
    Amiot, E.: David Lewin and Maximally Even Sets. J. of Math. Music 2, 157–172 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Amiot, E., Noll, T., Agon, C., Andreatta, M.: Fourier Oracles for Computer-Aided Improvisation. In: Proceedings of the ICMC: Computer Music Conference. Tulane University, New Orleans (2006)Google Scholar
  20. 20.
    Carlé, M., Hahn, S., Matern, M., Noll, T.: Demonstration of Fourier Scratching. Presented at MCM 2009, New Haven, US (2009)Google Scholar
  21. 21.
    Carlé, M., Noll, T.: Fourier Scratching: SOUNDING CODE. In: SuperCollider Symposium 2010, Berlin (2010)Google Scholar
  22. 22.
    Noll, T.: Ionian Theorem. J. of Math. Music 3, 137–151 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Clampitt, D., Noll, T.: Modes, the Height-Width Duality, and Handschin’s Tone Character. Music Theory Online 17(1) (2011)Google Scholar
  24. 24.
    Sethares, W.A.: Tuning, Timbre, Spectrum, Scale. Springer, London (2005)Google Scholar
  25. 25.
    Milne, A.J., Prechtl, A., Laney, R., Sharp, D.B.: Spectral Pitch Distance & Microtonal Melodies. Presented at ICMPC11, Seattle (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrew J. Milne
    • 1
  • Martin Carlé
    • 2
  • William A. Sethares
    • 3
  • Thomas Noll
    • 4
  • Simon Holland
    • 1
  1. 1.The Open UniversityMilton KeynesUK
  2. 2.Humboldt-Universität zu BerlinGermany
  3. 3.University of Wisconsin-MadisonUSA
  4. 4.Escola Superior de Música de CatalunyaBarcelonaSpain

Personalised recommendations