Satisfiability of Acyclic and almost Acyclic CNF Formulas (II)

  • Sebastian Ordyniak
  • Daniel Paulusma
  • Stefan Szeider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6695)

Abstract

In the first part of this work (FSTTCS’10) we have shown that the satisfiability of CNF formulas with β-acyclic hypergraphs can be decided in polynomial time. In this paper we continue and extend this work. The decision algorithm for β-acyclic formulas is based on a special type of Davis-Putnam resolution where each resolvent is a subset of a parent clause. We generalize the class of β-acyclic formulas to more general CNF formulas for which this type of Davis-Putnam resolution still applies. We then compare the class of β-acyclic formulas and this superclass with a number of known polynomial formula classes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1-2), 1–45 (1998)CrossRefMATHGoogle Scholar
  2. 2.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)CrossRefMATHGoogle Scholar
  3. 3.
    Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars Combinatoria 67, 273–281 (2003)MATHGoogle Scholar
  4. 4.
    Courcelle, B., Olariu, S.: Upper bounds to the clique-width of graphs. Discr. Appl. Math. 101(1-3), 77–114 (2000)CrossRefMATHGoogle Scholar
  5. 5.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)CrossRefMATHGoogle Scholar
  6. 6.
    Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM 30(3), 514–550 (1983)CrossRefMATHGoogle Scholar
  7. 7.
    Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discr. Appl. Math. 156(4), 511–529 (2008)CrossRefMATHGoogle Scholar
  8. 8.
    Ganian, R., Hlinený, P., Obdrzálek, J.: Better algorithms for satisfiability problems for formulas of bounded rank-width. In: Lodaya, K., Mahajan, M. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2010, Chennai, India, December 15-18. LIPIcs, vol. 8, pp. 73–83. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  9. 9.
    Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction, and database problems. The Computer Journal 51(3), 303–325 (2006), Survey paperCrossRefGoogle Scholar
  10. 10.
    Kloks, T., Bodlaender, H.: Approximating treewidth and pathwidth of some classes of perfect graphs. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 116–125. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  11. 11.
    Kullmann, O., Luckhardt, H.: Algorithms for SAT/TAUT decision based on various measures (1999) (manuscript)Google Scholar
  12. 12.
    Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic CNF formulas. In: Lodaya, K., Mahajan, M. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2010, Chennai, India, December 15-18. LIPIcs, vol. 8, pp. 84–95. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  13. 13.
    Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)CrossRefMATHGoogle Scholar
  14. 14.
    Schlipf, J.S., Annexstein, F.S., Franco, J.V., Swaminathan, R.P.: On finding solutions for extended Horn formulas. Information Processing Letters 54(3), 133–137 (1995)CrossRefMATHGoogle Scholar
  15. 15.
    Speckenmeyer, E.: Classes of easy expressions. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, ch. 13, Section 1.19, pp. 27–31. IOS Press, Amsterdam (2009)Google Scholar
  16. 16.
    Spinrad, J.P.: Efficient Graph Representations. Fields Institute Monographs. AMS, Providence (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sebastian Ordyniak
    • 1
  • Daniel Paulusma
    • 2
  • Stefan Szeider
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria
  2. 2.School of Engineering and Computing SciencesDurham UniversityDurhamUK

Personalised recommendations