Advertisement

Abstract

Quantified Boolean Formulas (QBFs) enable standard representation of PSPACE problems. In particular, formulas with two quantifier levels (2QBFs) enable representing problems in the second level of the polynomial hierarchy (Π2 P , Σ2 P ). This paper proposes an algorithm for solving 2QBF satisfiability by counterexample guided abstraction refinement (CEGAR). This represents an alternative approach to 2QBF satisfiability and, by extension, to solving decision problems in the second level of polynomial hierarchy. In addition, the paper presents a comparison of a prototype implementing the presented algorithm to state of the art QBF solvers, showing that a larger set of instances is solved.

Keywords

Model Check Conjunctive Normal Form Boolean Formula Bound Model Check Conjunctive Normal Form Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 236–249. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)Google Scholar
  3. 3.
    Browning, B., Remshagen, A.: A SAT-based solver for Q-ALL SAT. In: Menezes, R. (ed.) ACM Southeast Regional Conference, pp. 30–33. ACM, New York (2006)Google Scholar
  4. 4.
    Castellini, C., Giunchiglia, E., Tacchella, A.: Improvements to SAT-based conformant planning. In: European Conference on Planning (2001)Google Scholar
  5. 5.
    Chauhan, P., Clarke, E.M., Kukula, J.H., Sapra, S., Veith, H., Wang, D.: Automated abstraction refinement for model checking large state spaces using SAT based conflict analysis. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 33–51. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Clarke, E.M., Gupta, A., Strichman, O.: SAT-based counterexample-guided abstraction refinement. IEEE Trans. on CAD of Integrated Circuits and Systems 23(7), 1113–1123 (2004)CrossRefGoogle Scholar
  9. 9.
    Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 408–414. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) [18]Google Scholar
  11. 11.
    Eiter, T., Gottlob, G.: Propositional circumscription and extended closed-world reasoning are ΠP 2-complete. Theor. Comput. Sci. 114(2), 231–245 (1993)CrossRefzbMATHGoogle Scholar
  12. 12.
    Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Giunchiglia, E., Marin, P., Narizzano, M.: An effective preprocessor for QBF pre-reasoning. In: 2nd International Workshop on Quantification in Constraint Programming, QiCP (2008)Google Scholar
  14. 14.
    Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Biere, et al (eds.) [2], pp. 761–780Google Scholar
  15. 15.
    Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An effective preprocessor for QBFs based on equivalence reasoning. In: Strichman, O., Szeider, A. (eds.) [36], pp. 85–98Google Scholar
  16. 16.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: An Efficient QBF Solver. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 201–213. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified boolean formulas. J. Artif. Intell. Res (JAIR) 26, 371–416 (2006)zbMATHGoogle Scholar
  18. 18.
    Giunchiglia, E., Tacchella, A. (eds.): SAT 2003. LNCS, vol. 2919. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Janota, M., Botterweck, G., Grigore, R., Marques-Silva, J.: How to complete an interactive configuration process? In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 528–539. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction refinement algorithm for propositional circumscription. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 195–207. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Kleine-Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Biere, et al (eds.) [2]Google Scholar
  22. 22.
    Li, C.M., Manyà, F.: Maxsat, hard and soft constraints. In: Biere, et al (eds.) [2], pp. 613–631Google Scholar
  23. 23.
    Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, et al (eds.) [2], pp. 131–153Google Scholar
  24. 24.
    Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: Symposium Switching and Automata Theory (October 1972)Google Scholar
  25. 25.
    Mneimneh, M.N., Sakallah, K.A.: Computing vertex eccentricity in exponentially large graphs: QBF formulation and solution. In: Giunchiglia, E., Tacchella, A. (eds.) [18], pp. 411–425Google Scholar
  26. 26.
    Monniaux, D.: Quantifier elimination by lazy model enumeration. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    de Moura, L.M., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 438–455. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O., Lynce, I.: The seventh QBF solvers evaluation (QBFEVAL’10). In: Strichman, O., Szeider, S. (eds.) [36], pp. 237–250Google Scholar
  29. 29.
    Plaisted, D.A., Biere, A., Zhu, Y.: A satisfiability procedure for quantified boolean formulae. Discrete Applied Mathematics 130(2), 291–328 (2003)CrossRefzbMATHGoogle Scholar
  30. 30.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)CrossRefzbMATHGoogle Scholar
  31. 31.
    QBF solver evaluation portal, http://www.qbflib.org/index_eval.php
  32. 32.
    The Quantified Boolean Formulas satisfiability library, http://www.qbflib.org/
  33. 33.
    Ranjan, D.P., Tang, D., Malik, S.: A comparative study of 2QBF algorithms. In: SAT (2004)Google Scholar
  34. 34.
    Rintanen, J.: Improvements to the evaluation of quantified Boolean formulae. In: Dean, T. (ed.) IJCAI, pp. 1192–1197. Morgan Kaufmann, San Francisco (1999)Google Scholar
  35. 35.
    Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences. Constraints 15(4), 485–515 (2010)CrossRefzbMATHGoogle Scholar
  36. 36.
    Strichman, O., Szeider, S. (eds.): SAT 2010. LNCS, vol. 6175. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  37. 37.
    STRUQS: A Structural QBF Solver, www.qbflib.org/DESCRIPTIONS/struqs.pdf
  38. 38.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic 2(115-125), 10–13 (1968)Google Scholar
  39. 39.
    Umans, C.: The minimum equivalent DNF problem and shortest implicants. J. Comput. Syst. Sci. 63(4), 597–611 (2001)CrossRefzbMATHGoogle Scholar
  40. 40.
    Wintersteiger, C.M., Hamadi, Y., de Moura, L.: Efficiently solving quantified bit-vector formulas. In: Proceedings of Formal Methods in Computer Aided Design FMCAD (October 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mikoláš Janota
    • 2
  • Joao Marques-Silva
    • 1
    • 2
  1. 1.University College DublinIreland
  2. 2.INESC-IDLisbonPortugal

Personalised recommendations