Abstract

Minimally Unsatisfiable Subformulas (MUS) find a wide range of practical applications, including product configuration, knowledge-based validation, and hardware and software design and verification. MUSes also find application in recent Maximum Satisfiability algorithms and in CNF formula redundancy removal. Besides direct applications in Propositional Logic, algorithms for MUS extraction have been applied to more expressive logics. This paper proposes two algorithms for MUS extraction. The first algorithm is optimal in its class, meaning that it requires the smallest number of calls to a SAT solver. The second algorithm extends earlier work, but implements a number of new techniques. The resulting algorithms achieve significant performance gains with respect to state of the art MUS extraction algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving over-determined constraint satisfaction problems. In: International Joint Conference on Artificial Intelligence, pp. 276–281 (1993)Google Scholar
  2. 2.
    Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation 2, 75–97 (2008)MATHGoogle Scholar
  3. 3.
    Bruni, R.: On exact selection of minimally unsatisfiable subformulae. Ann. Math. Artif. Intell. 43(1), 35–50 (2005)CrossRefMATHGoogle Scholar
  4. 4.
    Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. INFORMS Journal on Computing 3(2), 157–168 (1991)CrossRefMATHGoogle Scholar
  5. 5.
    de Siqueira, J.L., Jean-Francois Puget, N.: Explanation-based generalisation of failures. In: European Conference on Artificial Intelligence, pp. 339–344 (1988)Google Scholar
  6. 6.
    Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–150 (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Handbook of Knowledge Representation, pp. 89–134. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  9. 9.
    Grégoire, É., Mazure, B., Piette, C.: Extracting MUSes. In: European Conference on Artificial Intelligence, pp. 387–391 (August 2006)Google Scholar
  10. 10.
    Grégoire, É., Mazure, B., Piette, C.: Boosting a complete technique to find MSS and MUS thanks to a local search oracle. In: International Joint Conference on Artificial Intelligence, pp. 2300–2305 (January 2007)Google Scholar
  11. 11.
    Grégoire, É., Mazure, B., Piette, C.: Local-search extraction of MUSes. Constraints 12(3), 325–344 (2007)CrossRefMATHGoogle Scholar
  12. 12.
    Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of Boolean clauses. In: International Conference on Tools with Artificial Intelligence, pp. 74–83 (November 2008)Google Scholar
  13. 13.
    Grégoire, É., Mazure, B., Piette, C.: Using local search to find MSSes and MUSes. European Journal of Operational Research 199(3), 640–646 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from constraint networks. In: European Conference on Artificial Intelligence, pp. 113–117 (2006)Google Scholar
  15. 15.
    Huang, J.: MUP: a minimal unsatisfiability prover. In: Asia South Pacific Design Automation, pp. 432–437 (2005)Google Scholar
  16. 16.
    Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-constrained problems. In: AAAI Conference on Artificial Intelligence, pp. 167–172 (2004)Google Scholar
  17. 17.
    Kullmann, O.: Lean clause-sets: generalizations of minimally unsatisfiable clause-sets. Discrete Applied Mathematics 130(2), 209–249 (2003)CrossRefMATHGoogle Scholar
  18. 18.
    Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)Google Scholar
  19. 19.
    Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell. 163(2), 203–232 (2005)CrossRefMATHGoogle Scholar
  20. 20.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)CrossRefMATHGoogle Scholar
  21. 21.
    Liffiton, M.H., Sakallah, K.A.: Searching for autarkies to trim unsatisfiable clause sets. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 182–195. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Liffiton, M.H., Sakallah, K.A.: Generalizing core-guided max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 481–494. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Marques-Silva, J.: Minimal unsatisfiability: Models, algorithms and applications. In: International Symposium on Multiple-Valued Logic, pp. 9–14 (2010)Google Scholar
  24. 24.
    Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) SAT Handbook, pp. 131–154. IOS Press, Amsterdam (2009)Google Scholar
  25. 25.
    Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Formal Methods in Computer-Aided Design (October 2010)Google Scholar
  26. 26.
    Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: a minimally-unsatisfiable subformula extractor. In: Design Automation Conference, pp. 518–523 (2004)Google Scholar
  27. 27.
    van Maaren, H., Wieringa, S.: Finding guaranteed MUSes fast. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Design, Automation and Test in Europe Conference, pp. 10880–10885 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joao Marques-Silva
    • 1
    • 2
  • Ines Lynce
    • 2
  1. 1.University College DublinIreland
  2. 2.INESC-ID/IST, TU LisbonPortugal

Personalised recommendations