Advertisement

Abstract

We begin by defining the setup and the framework of connective segmentation. Then we start from a theorem based on connective criteria, established for the power set of an arbitrary set. As the power set is an example of a complete lattice, we formulate and prove an analogue of the theorem for general complete lattices.

Secondly, we consider partial partitions and partial connections. We recall the definitions, and quote a result that gives a characterization of (partial) connections. As a continuation of the work in the first part, we generalize this characterization to complete lattices as well.

Finally we link these two approaches by means of a commutative diagram, in two manners.

Keywords

Connective segmentation complete lattice partial partition block-splitting opening commutative diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braga-Neto, U., Goutsias, J.: Connectivity on Complete Lattices: New Results. Comput. Vis. Image. Underst. 85, 22–53 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ore, O.: Galois connexions. Trans. Amer. Math. Soc. 55, 493–513 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ronse, C.: Partial Partitions, Partial Connections and Connective Segmentation. J. Math. Imaging Vis. 32, 97–125 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ronse, C.: Idempotent Block Splitting on Partial Partitions, I: Isotone Operators. Order. SpringerLink (2010)Google Scholar
  5. 5.
    Ronse, C., Serra, J.: Geodesy and Connectivity in Lattices. Fundamenta Informaticae 46, 349–395 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ronse, C., Serra, J.: Algebraic foundations of morphology. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications. ISTE/J. Wiley & Sons, London (2010)Google Scholar
  7. 7.
    Serra, J.: Viscous Lattices. J. Math. Imaging Vis. 22, 269–282 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Serra, J.: A Lattice Approach to Image Segmentation. J. Math. Imaging Vis. 24, 83–130 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Seidon Alsaody
    • 1
    • 2
  • Jean Serra
    • 1
  1. 1.Laboratoire d’Informatique Gaspard-Monge, Equipe AS3I, ESIEE ParisUniversité Paris-EstNoisy le Grand CedexFrance
  2. 2.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations