Surface Reconstruction Using Power Watershed

  • Camille Couprie
  • Xavier Bresson
  • Laurent Najman
  • Hugues Talbot
  • Leo Grady
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6671)

Abstract

Surface reconstruction from a set of noisy point measurements has been a well studied problem for several decades. Recently, variational and discrete optimization approaches have been applied to solve it, demonstrating good robustness to outliers thanks to a global energy minimization scheme. In this work, we use a recent approach embedding several optimization algorithms into a common framework named power watershed. We derive a specific watershed algorithm for surface reconstruction which is fast, robust to markers placement, and produces smooth surfaces. Experiments also show that our proposed algorithm compares favorably in terms of speed, memory requirement and accuracy with existing algorithms.

Keywords

optimization point measurements Graph cuts total variation 

References

  1. 1.
    Stanford 3D scanning repository, http://graphics.stanford.edu/data/3Dscanrep/
  2. 2.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, SMA 2001, pp. 249–266. ACM, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Beucher, S., Gratin, C.: Micromorph reference manual, applications and solutions. Ecole des Mines de Paris (1989)Google Scholar
  4. 4.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  5. 5.
    Braude, I., Marker, J., Museth, K., Nissanov, J., Breen, D.: Contour-based surface reconstruction using mpu implicit models. Graphical Models 69 (2007)Google Scholar
  6. 6.
    Breen, E., Jones, R.: Attribute openings, thinnings and granulometries. Graphical Models and Image Processing Journal 64(3), 377–389 (1996)Google Scholar
  7. 7.
    Chazelle, B.: A minimum spanning tree algorithm with inverse-ackermann type complexity. J. ACM 47, 1028–1047 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: ICCV 2009, pp. 731–738 (2009)Google Scholar
  9. 9.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: Anisotropic Diffusion Using Power Watersheds. In: ICIP 2010, pp. 4153–4156 (2010)Google Scholar
  10. 10.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: Power Watersheds: A Unifying Graph Based Optimization Framework. IEEE Transactions on Pattern Analysis and Machine Intelligence (to appear, 2011)Google Scholar
  11. 11.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(8), 1362–1374 (2009)CrossRefGoogle Scholar
  12. 12.
    Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Glowinski, R., Tallec, P.: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM, Philadelphia (1989)CrossRefMATHGoogle Scholar
  14. 14.
    Goldstein, T., Osher, S.: The split Bregman method for ℓ1-regularized problems. SIIMS 2(2), 323–343 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: Segmentation and surface reconstruction (2009)Google Scholar
  16. 16.
    Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  17. 17.
    Hirata, T.: A unified linear-time algorithm for computing distance maps. Information Processing Letters 58(3), 129–133 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. SIGGRAPH Comput. Graph. 26, 71–78 (1992)CrossRefGoogle Scholar
  19. 19.
    Jalba, A.C., Roerdink, J.B.T.M.: Efficient surface reconstruction using generalized coulomb potentials. IEEE Transactions on Visualization and Computer Graphics 13, 1512–1519 (2007)CrossRefGoogle Scholar
  20. 20.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP 2006, pp. 61–70. Eurographics Association, Aire-la-Ville (2006)Google Scholar
  21. 21.
    Kazhdan, M.M.: Reconstruction of solid models from oriented point sets. In: Symposium on Geometry Processing, pp. 73–82 (2005)Google Scholar
  22. 22.
    Lempitsky, V.: Surface extraction from binary volumes with higher-order smoothness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  23. 23.
    Lempitsky, V., Boykov, Y.: Global Optimization for Shape Fitting. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, USA (2007)Google Scholar
  24. 24.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  25. 25.
    Ragnemalm, I.: The euclidean distance transform in arbitrary dimensions 14(11), 883–888 (1993)Google Scholar
  26. 26.
    Setzer, S.: Split Bregman algorithm, douglas-rachford splitting and frame shrinkage. In: International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2009, pp. 464–476. Springer, Heidelberg (2009)Google Scholar
  27. 27.
    Strang, G.: Maximum flows through a domain. Math. Prog. (26), 123–143 (1983)CrossRefMATHGoogle Scholar
  28. 28.
    Ye, J., Bresson, X., Goldstein, T., Osher, S.: A fast variational method for surface reconstruction from sets of scattered points (2010) (submitted)Google Scholar
  29. 29.
    Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method. Computer Vision and Image Understanding 80, 295–319 (1998)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Camille Couprie
    • 1
  • Xavier Bresson
    • 2
  • Laurent Najman
    • 1
  • Hugues Talbot
    • 1
  • Leo Grady
    • 3
  1. 1.Laboratoire d’Informatique Gaspard-MongeUniversité Paris-Est, Equipe A3SI, ESIEE ParisNoisy-le-GrandFrance
  2. 2.Dpt. of Computer ScienceCity University of Hong KongHong Kong
  3. 3.Dpt. Imaging Analytics & InformaticsSiemens Corporate ResearchPrincetonUSA

Personalised recommendations