Hierarchical Segmentation of Multiresolution Remote Sensing Images

  • Camille Kurtz
  • Nicolas Passat
  • Anne Puissant
  • Pierre Gançarski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6671)

Abstract

The extraction of urban patterns from very high spatial resolution optical images presents challenges related to the size, the accuracy and the complexity of the data. In order to efficiently carry out this task, a multiresolution hierarchical approach is proposed. It enables to progressively segment several images (of increasing resolutions) of a same scene, based on low level criteria. The process, based on binary partition trees, is partially performed in an interactive fashion, and then automatically completed. Experiments on urban images datasets provide encouraging results which may be further used for detection and classification purpose.

Keywords

Hierarchical segmentation multisource images multiresolution interactive/automated segmentation partition-trees remote sensing urban analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akcay, H.G., Aksoy, S.: Automatic detection of geospatial objects using multiple hierarchical segmentations. IEEE Transactions on Geoscience and Remote Sensing 46(7), 2097–2111 (2008)CrossRefGoogle Scholar
  2. 2.
    Baatz, M., Hoffmann, C., Willhauck, G.: Progressing from object-based to object-oriented image analysis. In: Blaschke, T., Lang, S., Hay, G.J. (eds.) Object-Based Image Analysis. LNCS, ch. 1.2, pp. 29–42. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Barnsley, M.J., Barr, S.L.: Distinguishing urban land-use categories in fine spatial resolution land-cover data using a graph-based, structural pattern recognition system. Computers, Environment and Urban Systems 21(3), 209–225 (1997)CrossRefGoogle Scholar
  4. 4.
    Blaschke, T.: Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 65(1), 2–16 (2010)CrossRefGoogle Scholar
  5. 5.
    Gaetano, R., Scarpa, G., Poggi, G.: Hierarchical texture-based segmentation of multiresolution remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing 47(7), 2129–2141 (2009)CrossRefGoogle Scholar
  6. 6.
    Inglada, J., Michel, J.: Qualitative spatial reasoning for high-resolution remote sensing image analysis. IEEE Transactions on Geoscience and Remote Sensing 47(2), 599–612 (2009)CrossRefGoogle Scholar
  7. 7.
    Kurtz, C., Passat, N., Gançarski, P., Puissant, A.: Multiresolution region-based clustering for urban analysis. International Journal of Remote Sensing 31(22), 5941–5973 (2010)CrossRefGoogle Scholar
  8. 8.
    Kurtz, C., Puissant, A., Passat, N., Gançarski, P.: An interactive approach for extraction of urban patterns from multisource images. In: Symposium of JURSE 2011, Joint Urban Remote Sensing Event - 6th Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (to appear, 2011)Google Scholar
  9. 9.
    Monasse, P., Guichard, F.: Scale-space from a level lines tree. Journal of Visual Communication and Image Representation 11(2), 224–236 (2000)CrossRefGoogle Scholar
  10. 10.
    Pavlidis, T.: Structural pattern recognition. Springer, Heidelberg (1977)CrossRefMATHGoogle Scholar
  11. 11.
    Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 39(2), 309–320 (2001)CrossRefGoogle Scholar
  12. 12.
    Puissant, A., Weber, C.: The utility of Very High Spatial Resolution images to identify urban objects. Geocarto International 17(1), 33–44 (2002)CrossRefGoogle Scholar
  13. 13.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Transactions on Image Processing 9(4), 561–576 (2000)CrossRefGoogle Scholar
  14. 14.
    Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)CrossRefGoogle Scholar
  15. 15.
    Serra, J.C., Salembier, P.: Connected operators and pyramids. In: Dougherty, E.R., Gader, P.D., Serra, J.C. (eds.) Image Algebra and Morphological Image Processing IV, vol. 2030, pp. 65–76. SPIE, San Diego (1993)CrossRefGoogle Scholar
  16. 16.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  17. 17.
    Soille, P.: Constrained connectivity for hierarchical image decomposition and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  18. 18.
    Soille, P.: Constrained connectivity for the processing of very-high-resolution satellite images. International Journal of Remote Sensing 31(22), 5879–5893 (2010)CrossRefGoogle Scholar
  19. 19.
    Sun, W., Heidt, V., Gong, P., Xu, G.: Information fusion for rural land-use classification with high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 41(4), 883–890 (2003)CrossRefGoogle Scholar
  20. 20.
    Valero, S., Salembier, P., Chanussot, J.: New hyperspectral data representation using binary partition tree. In: IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. 80–83 (2010)Google Scholar
  21. 21.
    Vilaplana, V., Marques, F., Salembier, P.: Binary partition trees for object detection. IEEE Transactions on Image Processing 17(11), 2201–2216 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Camille Kurtz
    • 1
  • Nicolas Passat
    • 1
  • Anne Puissant
    • 2
  • Pierre Gançarski
    • 1
  1. 1.LSIIT, UMR CNRS 7005Université de StrasbourgStrasbourgFrance
  2. 2.LIVE, ERL CNRS 7230Université de StrasbourgStrasbourgFrance

Personalised recommendations