Concurrent Computation of Differential Morphological Profiles on Giga-Pixel Images

  • Michael H. F. Wilkinson
  • Pierre Soille
  • Martino Pesaresi
  • Georgios K. Ouzounis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6671)


In this paper we provide an efficient parallel algorithm for reconstruction from markers, and multi-scale analysis through differential morphological profiles, which are top-hat scale spaces based on openings and closings by reconstruction. The new algorithms provide speed gain in two ways: (i) through parallelism, and (ii) through more efficient re-use of previously computed data. The best version of the algorithm provided a 17× speed-up on 24 cores, over computation of the same algorithm on a single core. Compared to the basic method of repeated reconstructions by a sequential algorithm, a speed gain of 25.1 times was obtained.


Reconstruction Phase Marker Image Single Thread Level Root Speed Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24, 75–94 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Pesaresi, M., Benediktsson, J.A.: Image segmentation based on the derivative of the morphological profile. In: Goutsias, J., Vincent, L., Bloomberg, D. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging And Vision, vol. 18, pp. 179–188. Kluwer Academic Publishers, Boston (2000)CrossRefGoogle Scholar
  3. 3.
    Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 39(2), 309–320 (2001)CrossRefGoogle Scholar
  4. 4.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc. 7(4), 555–570 (1998)CrossRefGoogle Scholar
  5. 5.
    Urbach, E.R., Wilkinson, M.H.F.: Efficient 2-D gray-scale morphological transformations with arbitrary flat structuring elements. IEEE Trans. Image Proc. 17, 1–8 (2008)CrossRefGoogle Scholar
  6. 6.
    Vaz, M.S., Kiraly, A.P., Mersereau, R.M.: Multi-level decomposition of Euclidean spheres. In: Proc. Int. Symp. Math. Morphology (ISMM) 2007, pp. 461–472 (2007)Google Scholar
  7. 7.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: application and efficient algorithms. IEEE Trans. Image Proc. 2(2), 176–201 (1993)CrossRefGoogle Scholar
  8. 8.
    Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concurrent computation of attribute filters using shared memory parallel machines. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1800–1813 (2008)CrossRefGoogle Scholar
  9. 9.
    Wilkinson, M.H.F., Soille, P., Ouzounis, G.K.: Concurrent computation of differential morphological profiles for remote sensing. In: Köthe, U., Montanvert, A., Soille, P. (eds.) Proc. of WADGMM ICPR Workshop, pp. 67–71. IAPR, Istanbul (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael H. F. Wilkinson
    • 1
  • Pierre Soille
    • 2
  • Martino Pesaresi
    • 2
  • Georgios K. Ouzounis
    • 2
  1. 1.Johann Bernoulli InstituteUniversity of GroningenThe Netherlands
  2. 2.Geo-Spatial Information Analysis for Global Security and Stability, Global Security and Crisis Management UnitInstitute for the Protection and Security of the Citizen, Joint Research Centre, European CommissionIspraItaly

Personalised recommendations