Advertisement

Towards a Parallel Topological Watershed: First Results

  • Joël van Neerbos
  • Laurent Najman
  • Michael H. F. Wilkinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6671)

Abstract

In this paper we present a parallel algorithm for the topological watershed, suitable for a shared memory parallel architecture. On a 24-core machine an average speed-up of about 11 was obtained. The method opens up possibilities for segmentation of gigapixel images such as found in remote sensing routinely.

Keywords

Input Image Parallel Algorithm Priority Queue Sequential Algorithm Lower Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertrand, G.: On topological watersheds. Journal of Mathematical Imaging and Vision 22(2), 217–230 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation, pp. 17–21 (1979)Google Scholar
  3. 3.
    Couprie, M., Bertrand, G.: Topological grayscale watershed transformation. In: SPIE Vision Geometry V Proceedings, vol. 3168, pp. 136–146. Citeseer (1997)Google Scholar
  4. 4.
    Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. J. Math. Imag. Vis. 22, 231–249 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Matas, P., Dokládalová, E., Akil, M., Grandpierre, T., Najman, L., Poupa, M., Georgiev, V.: Parallel Algorithm for Concurrent Computation of Connected Component Tree. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 230–241. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Proc. 15, 3531–3539 (2006)CrossRefGoogle Scholar
  7. 7.
    Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. J. Math. Imag. Vis. (2010) (to appear), http://www.laurentnajman.org
  8. 8.
    Najman, L., Couprie, M., Bertrand, G.: Watersheds, mosaics and the emergence paradigm. Discrete Applied Mathematics 147(2-3), 301–324 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Roerdink, J.B.T.M., Meijster, A.: The Watershed Transform: Definitions, Algorithms and Parallelization Strategies. Fundamenta Informaticae 41, 187–228 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and parallelization. SIAM Journal on Computing 17(6), 1253–1262 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concurrent computation of attribute filters using shared memory parallel machines. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1800–1813 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joël van Neerbos
    • 1
  • Laurent Najman
    • 2
  • Michael H. F. Wilkinson
    • 1
  1. 1.Johann Bernoulli InstituteUniversity of GroningenThe Netherlands
  2. 2.Laboratoire d’Informatique Gaspard-MongeUniversité Paris-Est, A3SI, ESIEEFrance

Personalised recommendations