Spatio-temporal Quasi-Flat Zones for Morphological Video Segmentation

  • Jonathan Weber
  • Sébastien Lefèvre
  • Pierre Gançarski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6671)


In order to face the various needs of users, user-driven segmentation methods are expected to provide more relevant results than fully automatic approaches. Within Mathematical Morphology, several user-driven approaches have been proposed, mostly relying on the watershed transform. Nevertheless, Soille (IEEE TPAMI, 2008) has recently suggested another solution by gathering puzzle pieces computed as Quasi-Flat Zones (QFZ) of an image. In this paper, we study more deeply this user-driven segmentation scheme in the context of video data. Thus we also introduce the concept of Spatio-Temporal QFZ and propose several methods for extracting such zones from a video sequence.


Quasi-flat zones video segmentation segmentation personalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Transanction on Pattern Analysis and Machine Intelligence 16(6), 641–647 (1994)CrossRefGoogle Scholar
  2. 2.
    Agnus, V.: Segmentation spatio-temporelle de séquences d’images par des opérateurs de morphologie mathématique. Ph.D. thesis, Université Louis Pasteur, Strasbourg (2001)Google Scholar
  3. 3.
    Angulo, J., Serra, J.: Color segmentation by ordered mergings. In: Proceedings of the IEEE International Conference on Image Processing, pp. 125–128 (2003)Google Scholar
  4. 4.
    Chien, S.-Y., Huang, Y.-W., Chen, L.-G.: Predictive watershed: a fast watershed algorithm for video segmentation. IEEE Transactions on Circuits and Systems for Video Technology 13(5), 453–461 (2003)CrossRefGoogle Scholar
  5. 5.
    Crespo, J., Schafer, R.: The flat zone approach and color images. In: Serra, J., Soille, P. (eds.) Mathematical Morphology and its Applications to Image Processing, pp. 85–92. Kluwer Academic Publishers, Dordrecht (1994)CrossRefGoogle Scholar
  6. 6.
    Flores, F.C., Lotufo, R.A.: Watershed from propagated markers: An interactive method to morphological object segmentation in image sequences. Image and Vision Computing 28(11), 1491–1514 (2010)CrossRefGoogle Scholar
  7. 7.
    Gu, C., Lee, M.-C.: Semiautomatic segmentation and tracking of semantic video objects. IEEE Transactions on Circuits and Systems for Video Technology 8(5), 572–584 (1998)CrossRefGoogle Scholar
  8. 8.
    Marcotegui, B., Zanoguera, F., Correia, P., Rosa, R., Mech, R., Wollborn, M.: A video object generation tool allowing friendly user interaction. In: IEEE International Conference on Image Processing, vol. 2, pp. 391–395 (1999)Google Scholar
  9. 9.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Computer Graphics and Image Processing 10(3), 195–223 (1979)CrossRefGoogle Scholar
  10. 10.
    Rivest, J.-F., Beucher, S., Delhomme, J.: Marker-controlled segmentation: an application to electrical borehole imaging. Journal of Electronic Imaging 1(2), 136–142 (1992)CrossRefGoogle Scholar
  11. 11.
    Serra, J., Salembier, P.: Connected operators and pyramids. In: Proceedings of SPIE, Non-Linear Algebra and Morphological Image Processing, vol. 2030, pp. 65–76 (1993)Google Scholar
  12. 12.
    Soille, P.: On genuine connectivity relations based on logical predicates. In: Proceedings of the 14th International Conference on Image Analysis and Processing, pp. 487–492. IEEE Computer Society, Washington, DC, USA (2007)Google Scholar
  13. 13.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  14. 14.
    Soille, P.: Constrained connectivity for the processing of very-high-resolution satellite images. International Journal of Remote Sensing 31(22), 5879–5893 (2010), doi:10.1080/01431161.2010.512622CrossRefGoogle Scholar
  15. 15.
    Soille, P., Grazzini, J.: Constrained connectivity and transition regions. In: Proceedings of the 9th International Symposium on Mathematical Morphology and Its Application to Signal and Image Processing, Groningen, The Netherlands, pp. 59–69. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Zanoguera, F.: Segmentation interactive d’images fixes et de séquences vidéo basée sur des hierarchies de partitions. Ph.D. thesis, Ecole des Mines de Paris (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jonathan Weber
    • 1
  • Sébastien Lefèvre
    • 2
  • Pierre Gançarski
    • 1
  1. 1.University of Strasbourg - LSIITFrance
  2. 2.University of South Brittany - ValoriaFrance

Personalised recommendations