Abstract

Constrained connectivity relations partition the image definition domain into connected sets of maximal extent. The homogeneity and maximality of the resulting cells is subject to non-connective criteria that associate to logical predicates. The latter are based on attribute metrics, and are used to counter the leakage effect of the single-linkage clustering rule. Linkage is controlled by some dissimilarity measure and if unconstrained, may be used to generate regular connectivity classes. In this paper we introduce a hierarchical partition representation structure to map the evolution of components along the dissimilarity range in the absence of constraints. By contrast to earlier approaches, constraints may be put in place on the actual structure in the form of filters. This allows for custom and interactive segmentation of the image. Moreover, given an instance of the dissimilarity measure, one can retrieve all connected sets making up the corresponding connectivity class, directly from the hierarchy. The evolution of linkage relations with respect to the attributes on which the predicates are based on is used to compute a new type of pattern spectrum that is demonstrated on two real applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braga-Neto, U.M., Goutsias, J.: Connectivity on complete lattices: New results. Computer Vision and Image Understanding 85(1), 22–53 (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Breen, E.J., Jones, R.: Attribute openings, thinnings and granulometries. Computer Vision and Image Understanding 64(3), 377–389 (1996)CrossRefGoogle Scholar
  3. 3.
    Buf, J.M.H.D., Bayer, M.M. (eds.): Automatic Diatom Identification. Series in Machine Perception and Artificial Intelligence. World Scientific Publishing Co., Singapore (2002)MATHGoogle Scholar
  4. 4.
    Gueguen, L., Soille, P.: Frequent and dependent connectivities. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 120–131. Springer, Heidelberg (2011) (in press)Google Scholar
  5. 5.
    Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Analysis and Machine Intelligence 11(7), 701–715 (1989)CrossRefMATHGoogle Scholar
  6. 6.
    Meyer, F., Maragos, P.: Nonlinear scale-space representation with morphological levelings. Journal Visual Communication and Image Representation 11(3), 245–265 (2000)CrossRefGoogle Scholar
  7. 7.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Computer Graphics and Image Processing 10(3), 195–203 (1979)CrossRefGoogle Scholar
  8. 8.
    Ouzounis, G.K., Soille, P.: Differential area profiles. In: 20th Int. Conf. on Pattern Recognition, ICPR 2010, Istanbul, Turkey, pp. 4085–4088 (August 2010)Google Scholar
  9. 9.
    Ouzounis, G.K., Soille, P.: Attribute constrained connectivity and the alpha-tree representation. IEEE Trans. on Image Processing (submitted, 2011)Google Scholar
  10. 10.
    Ouzounis, G.K., Soille, P., Pesaresi, M.: Rubble detection from VHR aerial imagery data using differential morphological profiles. In: 34th Int. Symp. Remote Sensing of the Environment, Sydney, Australia (April 2011) (in press)Google Scholar
  11. 11.
    Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. IEEE Trans. Pattern Analysis and Machine Intelligence 29(6), 990–1004 (2007)CrossRefGoogle Scholar
  12. 12.
    Ouzounis, G.K., Wilkinson, M.H.F.: Partition-induced connections and operators for pattern analysis. Pattern Recognition 43(10), 3193–3207 (2010)CrossRefMATHGoogle Scholar
  13. 13.
    Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geoscience and Remote Sensing 39(2), 309–320 (2001)CrossRefGoogle Scholar
  14. 14.
    Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. Journal of Mathematical Imaging and Vision 8, 41–58 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ronse, C.: Partial partitions, partial connections and connective segmentation. Journal of Mathematical Imaging and Vision 32(2), 97–125 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. on Image Processing 4(8), 1153–1160 (1995)CrossRefGoogle Scholar
  17. 17.
    Serra, J. (ed.): Image Analysis and Mathematical Morphology. Theoretical Advances, vol. II. Academic Press, London (1988)Google Scholar
  18. 18.
    Serra, J.: A lattice approach to image segmentation. Journal of Mathematical Imaging and Vision 24, 83–130 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  20. 20.
    Soille, P.: Preventing chaining through transitions while favouring it within homogeneous regions. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 96–107. Springer, Heidelberg (2011)Google Scholar
  21. 21.
    Soille, P.: On genuine connectivity relations based on logical predicates. In: Int. Conf. Image Analysis and Processing (ICIAP), pp. 487–492 (2007)Google Scholar
  22. 22.
    Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Analysis and Machine Intelligence 29(2), 272–285 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Georgios K. Ouzounis
    • 1
  • Pierre Soille
    • 1
  1. 1.Geo-Spatial Information Analysis for Global Security and Stability, Global Security and Crisis Management UnitInstitute for the Protection and Security of the Citizen, Joint Research Centre, European CommissionIspraItaly

Personalised recommendations