Sparse Mathematical Morphology Using Non-negative Matrix Factorization

  • Jesús Angulo
  • Santiago Velasco-Forero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6671)

Abstract

Sparse modelling involves constructing a succinct representation of initial data as a linear combination of a few typical atoms of a dictionary. This paper deals with the use of sparse representations to introduce new nonlinear operators which efficiently approximate the dilation/erosion. Non-negative matrix factorization (NMF) is a dimensional reduction (i.e., dictionary learning) paradigm particularly adapted to the nature of morphological processing. Sparse NMF representations are studied to introduce pseudo-morphological binary dilations/erosions. The basic idea consists in processing exclusively the image dictionary and then, the result of processing each image is approximated by multiplying the processed dictionary by the coefficient weights of the current image. These operators are then extended to grey-level images by means of the level-set decomposition. The performance of the present method is illustrated using families of binary shapes and face images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloch, I., Heijmans, H., Ronse, C.: Mathematical Morphology. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, ch. 14, pp. 857–944. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? In: Advances in Neural Information Processing 16 (Proc. NIPS 2003). MIT Press, Cambridge (2004)Google Scholar
  3. 3.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. on Image Proc. 15(12), 3736–3745 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, Boston (1994)MATHGoogle Scholar
  5. 5.
    Hoyer, P.: Non-negative Matrix Factorization with Sparseness Constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)MathSciNetMATHGoogle Scholar
  6. 6.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefGoogle Scholar
  7. 7.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing 13 (Proc. NIPS 2000). MIT Press, Cambridge (2001)Google Scholar
  8. 8.
    Li, S.Z., Hou, X., Zhang, H., Cheng, Q.: Learning spatially localized parts-based representations. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Hawaii, USA, vol. I, pp. 207–212 (2001)Google Scholar
  9. 9.
    Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. on Image Proc. 17(1), 53–69 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ronse, C.: Bounded variation in posets, with applications in morphological image processing. In: Passare, M. (ed.) Proceedings of the Kiselmanfest 2006, Acta Universitatis Upsaliensis, vol. 86, pp. 249–281 (2009)Google Scholar
  11. 11.
    Serra, J.: Image Analysis and Mathematical Morphology. Image Analysis and Mathematical Morphology, vol. I. Theoretical Advances, vol. II. Academic Press, London (1982) (1988)Google Scholar
  12. 12.
    Soille, P.: Morphological Image Analysis. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
  13. 13.
    Wendt, P.D., Coyle, E.J., Gallagher, N.C.: Stack Filters. IEEE Trans. on Acoustics, Speech, and Signal Processing 34(4), 898–911 (1986)CrossRefGoogle Scholar
  14. 14.
    Yu, G., Sapiro, G., Mallat, S.: Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity. IEEE Trans. on Image Processing (2011)Google Scholar
  15. 15.
    Yuan, Y., Li, X., Pang, Y., Lu, X., Tao, D.: Binary Sparse Nonnegative Matrix Factorization. IEEE Trans. on Circuits and Systems for Video Technology 19(5), 772–777 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jesús Angulo
    • 1
  • Santiago Velasco-Forero
    • 1
  1. 1.CMM-Centre de Morphologie MathématiqueMathématiques et Systèmes, MINES ParisTechFontainebleau CedexFrance

Personalised recommendations