A Discussion on Visual Interactive Data Exploration Using Self-Organizing Maps

  • Julia Moehrmann
  • Andre Burkovski
  • Evgeny Baranovskiy
  • Geoffrey-Alexeij Heinze
  • Andrej Rapoport
  • Gunther Heidemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6731)


In recent years, a variety of visualization techniques for visual data exploration based on self-organizing maps (SOMs) have been developed. To support users in data exploration tasks, a series of software tools emerged which integrate various visualizations. However, the focus of most research was the development of visualizations which improve the support in cluster identification. In order to provide real insight into the data set it is crucial that users have the possibility of interactively investigating the data set. This work provides an overview of state-of-the-art software tools for SOM-based visual data exploration. We discuss the functionality of software for specialized data sets, as well as for arbitrary data sets with a focus on interactive data exploration.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  2. 2.
    Ultsch, A., Siemon, H.P.: Kohonen’s Self Organizing Feature Maps for Exploratory Data Analysis. In: International Neural Networks Conference, pp. 305–308. Kluwer Academic Press, Paris (1990)Google Scholar
  3. 3.
    Ultsch, A.: Maps for the Visualization of High-Dimensional Data Spaces. In: Workshop on Self-Organizing Maps, pp. 225–230 (2003)Google Scholar
  4. 4.
    Ultsch, A.: U*-Matrix: A Tool to Visualize Clusters in High Dimensional Data. Technical Report 36, Dept. of Mathematics and Computer Science, University of Marburg, Germany (2003)Google Scholar
  5. 5.
    Merkl, D., Rauber, A.: Alternative Ways for Cluster Visualization in Self-Organizing Maps. In: Workshop on Self-Organizing Maps, pp. 106–111 (1997)Google Scholar
  6. 6.
    Pampalk, E., Rauber, A., Merkl, D.: Using Smoothed Data Histograms for Cluster Visualization in Self-Organizing Maps. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 871–876. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Pölzlbauer, G., Rauber, A., Dittenbach, M.: Advanced visualization techniques for self-organizing maps with graph-based methods. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 75–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Poelzlbauer, G., Dittenbach, M., Rauber, A.: A Visualization Technique for Self-Organizing Maps with Vector Fields to Obtain the Cluster Structure at Desired Levels of Detail. IEEE International Joint Conference on Neural Networks 3, 1558–1563 (2005)Google Scholar
  9. 9.
    Poelzlbauer, G., Dittenbach, M., Rauber, A.: Advanced Visualization of Self-Organizing Maps with Vector Fields. Neural Networks 19(6-7), 911–922 (2006)CrossRefMATHGoogle Scholar
  10. 10.
    Tasdemir, K., Merenyi, E.: Exploiting Data Topology in Visualization and Clustering of Self-Organizing Maps. IEEE Transactions on Neural Networks 20(4), 549–562 (2009)CrossRefGoogle Scholar
  11. 11.
    Latif, K., Mayer, R.: Sky-Metaphor Visualisation for Self-Organising Maps. J. Universal Computer Science (7th International Conference on Knowledge Management), 400–407 (2007)Google Scholar
  12. 12.
    Vesanto, J.: SOM-based Data Visualization Methods. Intelligent Data Analysis 3, 111–126 (1999)CrossRefMATHGoogle Scholar
  13. 13.
    Mayer, R., Aziz, T.A., Rauber, A.: Visualising Class Distribution on Self-Organising Maps. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 359–368. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Rauber, A.: LabelSOM: on the Labeling of Self-Organizing Maps. In: International Joint Conference on Neural Networks, vol. 5, pp. 3527–3532 (1999)Google Scholar
  15. 15.
    Neumayer, R., Mayer, R., Polzlbauer, G., Rauber, A.: The Metro Visualisation of Component Planes for Self-Organising Maps. In: International Joint Conference on Neural Networks, pp. 2788–2793 (2007)Google Scholar
  16. 16.
    Dzemyda, G., Kurasova, O.: Comparative Analysis of the Graphical Result Presentation in the SOM Software. Informatica 13(3), 275–286 (2002)MATHGoogle Scholar
  17. 17.
    Keim, D., Mansmann, F., Schneidewind, J., Ziegler, H.: Challenges in Visual Data Analysis. In: 10th International Conference on Information Visualization, pp. 9–16 (2006)Google Scholar
  18. 18.
    Heidemann, G., Saalbach, A., Ritter, H.: Semi-Automatic Acquisition and Labelling of Image Data Using SOMs. In: European Symposium on Artificial Neural Networks, pp. 503–508 (2003)Google Scholar
  19. 19.
    Bekel, H., Heidemann, G., Ritter, H.: Interactive image data labeling using self-organizing maps in an augmented reality scenario. Neural Networks 18(5-6), 566–574 (2005)CrossRefGoogle Scholar
  20. 20.
    Moehrmann, J., Bernstein, S., Schlegel, T., Werner, G., Heidemann, G.: Optimizing the Usability of Interfaces for the Interactive Semi-Automatic Labeling of Large Image Data Sets. In: HCI International. LNCS, Springer, Heidelberg (to appear, 2011)Google Scholar
  21. 21.
    Schreck, T., Bernard, J., von Landesberger, T., Kohlhammer, J.: Visual Cluster Analysis of Trajectory Data with Interactive Kohonen Maps. Information Visualization 8, 14–29 (2009)CrossRefGoogle Scholar
  22. 22.
    Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., Ma, C.: Self-Organizing Maps in Mining Gene Expression Data. Information Sciences 139(1-2), 79–96 (2001)CrossRefMATHGoogle Scholar
  23. 23.
    Kanaya, S., Kinouchi, M., Abe, T., Kudo, Y., Yamada, Y., Nishi, T., Mori, H., Ikemura, T.: Analysis of Codon Usage Diversity of Bacterial Genes with a Self-Organizing Map (SOM): Characterization of Horizontally Transferred Genes with Emphasis on the E. Coli O157 Genome. Gene 276(1-2), 89–99 (2001)CrossRefGoogle Scholar
  24. 24.
    Simple-BL SOM Website, http://kanaya.naist.jp/SOM/
  25. 25.
    Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-Organizing Map in Matlab: the SOM toolbox. In: Matlab DSP Conference, pp. 35–40 (1999)Google Scholar
  26. 26.
  27. 27.
  28. 28.
  29. 29.
  30. 30.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Julia Moehrmann
    • 1
  • Andre Burkovski
    • 1
  • Evgeny Baranovskiy
    • 1
  • Geoffrey-Alexeij Heinze
    • 1
  • Andrej Rapoport
    • 1
  • Gunther Heidemann
    • 1
  1. 1.Intelligent Systems GroupUniversity of StuttgartStuttgartGermany

Personalised recommendations