Advertisement

Dynamic Spectrum Trade and Game-Theory Based Network Selection in LTE Virtualization Using Uniform Auctioning

  • Manzoor Ahmed Khan
  • Yasir Zaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6649)

Abstract

It is expected that in future user-centric wireless network scenario the concept of dynamic spectrum trade will provide operators with opportunities to utilize the spectrum more efficiently. Wireless market players (both incumbent and new entrants) trade the spectrum chunks on the provide, when needed basis with the spectrum broker. In this paper, we model the interaction between different stake-holders such as users, operators and spectrum brokers at different hierarchical level and investigate the equilibria. We also model the utility functions of all the stake-holders. We propose and implement the realization framework for the proposed dynamic spectrum allocation approach using Long Term Evolution (LTE) virtualization.

Keywords

LTE Wireless virtualization Spectrum sharing Uniform auctioning format 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DARPA Next Generation Communication Program. -program/, http://www.sharedspectrum.com/resources/darpa-next-generation-communications
  2. 2.
    Buddhikot, M.M., Kolodzy, P., Miller, S., Ryan, K., Evans, J.: Dimsumnet: New directions in wireless networking using coordinated dynamic spectrum access. In: IEEE WoWMoM 2005, pp. 78–85 (2005)Google Scholar
  3. 3.
    Virgilio Rodriguez, Klaus Moessner, and Rahim Tafazolli. Market-driven dynamic spectrum allocation: Optimal end-user pricing and admission control for cdma. In: proceedings of IST Mobile and Wireless Communication Summit (2005)Google Scholar
  4. 4.
    Rodriguez, V., Moessner, K., Tafazolli, R.: Auction driven dynamic spectrum allocation: optimal bidding, pricing and service priorities for multi-rate, multi-class cdma. In: The proceedings of 16th Internation Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1850–1854 (2005)Google Scholar
  5. 5.
    Ryan, K., Aravantinos, E., Buddhikot, M.M.: A new pricing model for next generation spectrum access. In: Proceedings of the first international workshop on Technology and policy for accessing spectrum, TAPAS 2006. ACM, New York (2006)Google Scholar
  6. 6.
    S.: G, C. Buragohain, L. Cao, H. Zheng, S. Suri. A general framework for wireless spectrumGoogle Scholar
  7. 7.
    IST-DRIVE PRoject, http://www.ist-drive.org
  8. 8.
  9. 9.
    Bavier, A., Bowman, M., Culler, D., Chun, B., Karlin, S., Muir, S., Peterson, L., Roscoe, T., Spalink, T., Wawrzoniak, M.: Operating system support for planetary-scale network services (March 2004)Google Scholar
  10. 10.
    Paul, S., Seshan, S.: Geni technical document on wireless virtualization (September 2006)Google Scholar
  11. 11.
    AKARI architecture conceptual design for new generation networkGoogle Scholar
  12. 12.
    Bauck, S., Görg, C.: Virtualisation as a co-existence tool in a future internet. In: ICT Mobile Summit - 4WARD Workshop, Stockholm, Sweden (June 2008)Google Scholar
  13. 13.
    Zaki, Y., Zhao, L., Timm-Giel, A., Görg, C.: A Novel LTE Wireless Virtualization Framework. In: Second International ICST Conference on Mobile Networks And Management (Monami), pp. 1–13 .CD publication, Santander ( 2010)Google Scholar
  14. 14.
    Zaki, Y., Zhao, L., Timm-Giel, A., Görg, C.: LTE Wireless Virtualization and Spectrum Management. In: Third Joint IFIP Wireless and Mobile Networking Conference (WMNC), Budapest, Hungary (October 2010)Google Scholar
  15. 15.
    Khan, M.A., Toseef, U.: User utility function as quality of experience (qoe). In: Proceedings of the ICN 2011, pp. 99–104 (2011)Google Scholar
  16. 16.
    Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. International Journal of Game Theory 2, 65–67 (1973), doi:10.1007/BF01737559MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Monderer, D., Shapley, L.S.: Games and economic behavior, vol. 14, pp. 124–143 (1996)Google Scholar
  18. 18.
    Young, H.P.: Learning by trial and error. Games and Economic Behavior 65, 626–643 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tembine, H.: Distributed learning in dynamic robust games: dynamics, algorithms and network applications. Lecture Notes (2010)Google Scholar
  20. 20.
    Cramton, P.: Peter Cramton. The efficiency of the fcc spectrum auctions. Journal of Law and Economics 41 (1998)Google Scholar
  21. 21.
    Spectrum auctions. Auction design issues for spectrum awards market analysis ltdGoogle Scholar
  22. 22.
    French, R.: Spectrum auctions 101. The Journal of Public Sector Management (2008)Google Scholar
  23. 23.
    Sandholm, T., Suri, S.: Market clearability. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pp. 1145–1151 (2001)Google Scholar
  24. 24.
    Williams, D.E., Garcia, J.: Virtualization with XenTM: Including XenEnterpriseTM, XenServerTM, and XenExpressTM. SYNGRESS (2007)Google Scholar
  25. 25.
    OPNET website, http://www.opnet.com

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Manzoor Ahmed Khan
    • 1
  • Yasir Zaki
    • 2
  1. 1.DAI-LaborTechnical UniversityBerlinGermany
  2. 2.ComNetsUniversity of BremenGermany

Personalised recommendations