Sequential Classifier Combination for Pattern Recognition in Wireless Sensor Networks

  • Janos Csirik
  • Peter Bertholet
  • Horst Bunke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6713)

Abstract

In the current paper we consider the task of object classification in wireless sensor networks. Due to restricted battery capacity, minimizing the energy consumption is a main concern in wireless sensor networks. Assuming that each feature needed for classification is acquired by a sensor, a sequential classifier combination approach is proposed that aims at minimizing the number of features used for classification while maintaining a given correct classification rate. In experiments with data from the UCI repository, the feasibility of this approach is demonstrated.

Keywords

Sequential classifier combination wireless sensor networks feature ranking feature selection system lifetime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Inc., Hoboken (2004)CrossRefMATHGoogle Scholar
  2. 2.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)CrossRefGoogle Scholar
  3. 3.
    Rahman, A.F.R., Fairhurst, M.C.: Serial Combination of Multiple Experts: A Unified Evaluation. Pattern Anal. Appl. 2(4), 292–311 (1999)CrossRefGoogle Scholar
  4. 4.
    Zhang, Z., Zhou, S., Zhou, A.: Sequential Classifiers Combination for Text Categorization: An Experimental Study. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004. LNCS, vol. 3129, pp. 509–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Chellapilla, K., Shilman, M., Simard, P.: Combining Multiple Classifiers for Faster Optical Character Recognition. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 358–367. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Viola, P., Jones, M.: Robust Real-Time Face Detection. Int. Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  7. 7.
    Capelli, R., Maio, D., Maltoni, D., Nanni, L.: A Two-Stage Fingerprint Classification System. In: Proc. of the ACM SIGMM Workshop on Biometrics Methods and Applications, pp. 95–99. ACM, New York (2003)Google Scholar
  8. 8.
    Last, M., Bunke, H., Kandel, A.: A Feature-Based Serial Approach to Classifier Combination. Pattern Analysis and Applications 5, 385–398 (2002)CrossRefGoogle Scholar
  9. 9.
    Xiao, Y., Chen, H., Li, F.: Handbook on Sensor Networks, World Scientific Publishing Co., Singapore (2010)Google Scholar
  10. 10.
    Duarte, M.F., Hu, Y.H.: Vehicle Classification in Distributed Sensor Networks. Journal of Parallel and Distributed Computing 64(7), 826–838 (2004)CrossRefGoogle Scholar
  11. 11.
    Brooks, R.R., Ramanathan, P., Sayeed, A.M.: Distributed Target Classification and Tracking in Sensor Networks. Proceedings of the IEEE 91(8), 1163–1171 (2003)CrossRefGoogle Scholar
  12. 12.
    Meesookho, C., Narayanan, S., Raghavendra, C.S.: Collaborative Classification Applications in Sensor Networks. In: IEEE Sensor Array and Multichannel Signal Processing Workshop Proceedings, pp. 370–374 (2002)Google Scholar
  13. 13.
    Wang, X., Bi, D., Ding, L., Wang, S.: Agent Collaborative Target Localization and Classification in Wireless Sensor Networks. Sensors 7, 1359–1386 (2007)CrossRefGoogle Scholar
  14. 14.
    Sun, Y., Qi, H.: Dynamic Target Classification in Wireless Sensor Networks. In:19th International Conference Pattern Recognition, ICPR 2008 (2008)Google Scholar
  15. 15.
    Gu, L., et al.: Lightweight Detection and Classification for Wireless Sensor Networks in Realistic Environments. In: Proc. of the Third Int. Conference on Embedded Networked Sensor Systems, ACM, New York (2005)Google Scholar
  16. 16.
    Wang, L., Xiao, Y.: A Survey of Energy-Efficient Scheduling Mechanisms in Sensor Networks. Mobile Networks and Applications 11, 723–740 (2006)CrossRefGoogle Scholar
  17. 17.
    Chow, C.K.: On Optimum Recognition Error and Reject Trade-Off. IEEE Transactions on Information Theory, IT 16(1), 41–46 (1970)CrossRefMATHGoogle Scholar
  18. 18.
    Fumera, G., Roli, F., Giacinto, G.: Reject Option with Multiple Thresholds. Pattern Recognition 33(12), 2099–2101 (2000)CrossRefMATHGoogle Scholar
  19. 19.
    Hanczar, B., Dougherty, E.R.: Classification with Reject Option in Gene Expression Data. Bioinformatics 24(17), 1889–1895 (2008)CrossRefGoogle Scholar
  20. 20.
    Kira, K., Rendell, L.A.: The Feature Selection Problem Traditional Methods and a new Algorithm. In: Proceedings of the tenth National Conference on Artificial Intelligence, pp. 129–134. AAAI Press, Menlo Park (1992)Google Scholar
  21. 21.
    Pudil, P., Novovicova, J., Kittler, J.: Floating Search Methods in Feature Selection. Pattern Recognition Letters 15(11), 1119–1125 (1994)CrossRefGoogle Scholar
  22. 22.
    Csirik, J., Bunke, H.: Feature Selection and Ranking for Pattern Classification in Wireless Sensor Networks. In: Csirik, J., Bunke, H. (eds.) Pattern Recognition, Machine Intelligence and Biometrics Expanding Frontiers, Springer, Heidelberg (2011)Google Scholar
  23. 23.
    Zappi, P., Lombriser, C., Farelle, E., Roggen, D., Benini, L., Troester, G.: Experiences with Experiments in Ambient Intelligence Environments. In: IADIS Int. Conference Wireless Applications and Computing (2009)Google Scholar
  24. 24.
    Intille, S., Larson, K., Tapia, E.M., Beaudin, J.S., Kaushik, P., Nawyn, J., Rockinson, R.: Using a Live-In Laboratory for Ubiquitous Computing Research. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 349–365. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Frank, A., Asuncion, A.U.: Machine Learning Repository. University of California, School of Information and Computer Science, Irvine CA (2010), http://archive.ics.uci.edu/ml Google Scholar
  26. 26.
    Gyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.): Feature Extraction, Foundations and Applications. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Janos Csirik
    • 1
  • Peter Bertholet
    • 2
  • Horst Bunke
    • 2
  1. 1.Institute of InformaticsUniversity of SzegedHungary
  2. 2.Institute of Informatics and Applied MathematicsUniversity of BernSwitzerland

Personalised recommendations