Secure Efficient Multiparty Computing of Multivariate Polynomials and Applications

  • Dana Dachman-Soled
  • Tal Malkin
  • Mariana Raykova
  • Moti Yung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6715)

Abstract

We present a robust secure methodology for computing functions that are represented as multivariate polynomials where parties hold different variables as private inputs. Our generic efficient protocols are fully black-box and employ threshold additive homomorphic encryption; they do not assume honest majority, yet are robust in detecting any misbehavior. We achieve solutions that take advantage of the algebraic structure of the polynomials, and are polynomial-time in all parameters (security parameter, polynomial size, polynomial degree, number of parties). We further exploit a “round table” communication paradigm to reduce the complexity in the number of parties.

A large collection of problems are naturally and efficiently represented as multivariate polynomials over a field or a ring: problems from linear algebra, statistics, logic, as well as operations on sets represented as polynomials. In particular, we present a new efficient solution to the multi-party set intersection problem, and a solution to a multi-party variant of the polynomial reconstruction problem.

Keywords

secure multiparty computation multivariate polynomial evaluation additive homomorphic encryption threshold cryptosystems secret sharing multiparty set intersection 

References

  1. 1.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (1988)Google Scholar
  2. 2.
    Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13 (2000)Google Scholar
  4. 4.
    Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: STOC 1988: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM, New York (1988)CrossRefGoogle Scholar
  5. 5.
    Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512 (2010), http://eprint.iacr.org/
  6. 6.
    Choi, S., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a non-malleable encryption scheme from any semantically secure one. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Multiparty secure computation over multivariate polynomials. Technical Report CUCS-024-10 (2010)Google Scholar
  10. 10.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: CRYPTO 1984, pp. 10–18. Springer-Verlag New York, Inc., New York (1985)Google Scholar
  11. 11.
    Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: FOCS, pp. 427–437. ACM, New York (1987)Google Scholar
  12. 12.
    Fouque, P.A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Franklin, M., Mohassel, P.: Efficient and secure evaluation of multivariate polynomials and applications. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 236–254. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Franklin, M., Yung, M.: Communication complexity of secure computation (extended abstract). In: STOC 1992: Proceedings of the Twenty-fourth Annual ACM Symposium on Theory of Computing, pp. 699–710 (1992)Google Scholar
  15. 15.
    Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Galil, Z., Haber, S., Yung, M.: Cryptographic computation: Secure fault tolerant protocols and the public-key model. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 135–155. Springer, Heidelberg (1988)Google Scholar
  17. 17.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM, New York (2009)Google Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC 1987: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM, New York (1987)Google Scholar
  20. 20.
    Goldreich, O.: Foundations of cryptography: a primer. Found. Trends Theor. Comput. Sci. 1(1), 1–116 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: STOC 1982: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 365–377. ACM, New York (1982)CrossRefGoogle Scholar
  22. 22.
    Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  29. 29.
    Patra, A., Choudhary, A., Rangan, C.: Information theoretically secure multi party set intersection re-visited. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 71–91. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Patra, A., Choudhary, A., Rangan, C.P.: Round efficient unconditionally secure mpc and multiparty set intersection with optimal resilience. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 398–417. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC 1989: Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing, pp. 73–85 (1989)Google Scholar
  32. 32.
    Sang, Y., Shen, H.: Efficient and secure protocols for privacy-preserving set operations. ACM Trans. Inf. Syst. Secur. 13, 9:1–9:35 (2009)CrossRefGoogle Scholar
  33. 33.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Yao, A.C.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)Google Scholar
  35. 35.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dana Dachman-Soled
    • 1
  • Tal Malkin
    • 1
  • Mariana Raykova
    • 1
  • Moti Yung
    • 2
  1. 1.Columbia UniversityUSA
  2. 2.Google Inc. and Columbia UniversityUSA

Personalised recommendations