Secure Efficient Multiparty Computing of Multivariate Polynomials and Applications

  • Dana Dachman-Soled
  • Tal Malkin
  • Mariana Raykova
  • Moti Yung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6715)

Abstract

We present a robust secure methodology for computing functions that are represented as multivariate polynomials where parties hold different variables as private inputs. Our generic efficient protocols are fully black-box and employ threshold additive homomorphic encryption; they do not assume honest majority, yet are robust in detecting any misbehavior. We achieve solutions that take advantage of the algebraic structure of the polynomials, and are polynomial-time in all parameters (security parameter, polynomial size, polynomial degree, number of parties). We further exploit a “round table” communication paradigm to reduce the complexity in the number of parties.

A large collection of problems are naturally and efficiently represented as multivariate polynomials over a field or a ring: problems from linear algebra, statistics, logic, as well as operations on sets represented as polynomials. In particular, we present a new efficient solution to the multi-party set intersection problem, and a solution to a multi-party variant of the polynomial reconstruction problem.

Keywords

secure multiparty computation multivariate polynomial evaluation additive homomorphic encryption threshold cryptosystems secret sharing multiparty set intersection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (1988)Google Scholar
  2. 2.
    Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13 (2000)Google Scholar
  4. 4.
    Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: STOC 1988: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM, New York (1988)CrossRefGoogle Scholar
  5. 5.
    Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512 (2010), http://eprint.iacr.org/
  6. 6.
    Choi, S., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a non-malleable encryption scheme from any semantically secure one. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Multiparty secure computation over multivariate polynomials. Technical Report CUCS-024-10 (2010)Google Scholar
  10. 10.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: CRYPTO 1984, pp. 10–18. Springer-Verlag New York, Inc., New York (1985)Google Scholar
  11. 11.
    Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: FOCS, pp. 427–437. ACM, New York (1987)Google Scholar
  12. 12.
    Fouque, P.A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Franklin, M., Mohassel, P.: Efficient and secure evaluation of multivariate polynomials and applications. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 236–254. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Franklin, M., Yung, M.: Communication complexity of secure computation (extended abstract). In: STOC 1992: Proceedings of the Twenty-fourth Annual ACM Symposium on Theory of Computing, pp. 699–710 (1992)Google Scholar
  15. 15.
    Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Galil, Z., Haber, S., Yung, M.: Cryptographic computation: Secure fault tolerant protocols and the public-key model. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 135–155. Springer, Heidelberg (1988)Google Scholar
  17. 17.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM, New York (2009)Google Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC 1987: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM, New York (1987)Google Scholar
  20. 20.
    Goldreich, O.: Foundations of cryptography: a primer. Found. Trends Theor. Comput. Sci. 1(1), 1–116 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: STOC 1982: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 365–377. ACM, New York (1982)CrossRefGoogle Scholar
  22. 22.
    Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  29. 29.
    Patra, A., Choudhary, A., Rangan, C.: Information theoretically secure multi party set intersection re-visited. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 71–91. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Patra, A., Choudhary, A., Rangan, C.P.: Round efficient unconditionally secure mpc and multiparty set intersection with optimal resilience. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 398–417. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC 1989: Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing, pp. 73–85 (1989)Google Scholar
  32. 32.
    Sang, Y., Shen, H.: Efficient and secure protocols for privacy-preserving set operations. ACM Trans. Inf. Syst. Secur. 13, 9:1–9:35 (2009)CrossRefGoogle Scholar
  33. 33.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Yao, A.C.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)Google Scholar
  35. 35.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dana Dachman-Soled
    • 1
  • Tal Malkin
    • 1
  • Mariana Raykova
    • 1
  • Moti Yung
    • 2
  1. 1.Columbia UniversityUSA
  2. 2.Google Inc. and Columbia UniversityUSA

Personalised recommendations