Exponent Blinding Does Not Always Lift (Partial) Spa Resistance to Higher-Level Security

  • Werner Schindler
  • Kouichi Itoh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6715)

Abstract

Exponent blinding is known as a secure countermeasure against side-channel attacks. If single power traces reveal some exponent bits, an attack by Fouque et al. applies that recovers the exponent. However, this attack becomes infeasible if some of the guessed bits are incorrect. Thus, the attack was not assumed to be a realistic threat. In this paper we present two variants of a novel generic attack, which works for considerable error rates at each bit position, disproving the hypothesis that mere exponent blinding is always sufficient. We confirmed experimentally that our attack permits up to  28% (RSA case) or  23% (ECC case) error bits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acıiçmez, O., Schindler, W.: A Vulnerability in RSA Implementations due to Instruction Cache Analysis and Its Demonstration on OpenSSL. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 256–273. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Fouque, P., Kunz-Jacques, S., Martinet, G., Muller, F., Valette, F.: Power Attack on Small RSA Public Exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 339–353. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Henecka, W., May, A., Meurer, A.: Correcting Errors in RSA Private Keys. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Courrège, J.C., Feix, B., Roussellet, M.: Simple Power Analysis on Exponentiation Revisited. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 65–79. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Itoh, K., Izu, T., Takenaka, M.: Address-bit Differential Power Analysis of Cryptographic Schemes OK-ECDH and OK-ECDSA. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 129–143. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Itoh, K., Yamamoto, D., Yajima, J., Ogata, W.: Collision-Based Power Attack for RSA with Small Public Exponent. IEICE Transactions on Information and Systems E92-D5, #5, 897–908 (2009)CrossRefGoogle Scholar
  8. 8.
    Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Lang, S.: Algebra, 3rd edn. Addison-Wesley, Reading (1993)MATHGoogle Scholar
  11. 11.
    Schindler, W.: A Combined Timing and Power Attack. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 263–279. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Yen, S., Lien, W., Moon, S., Ha, J.: Power Analysis by Exploiting Chosen Message and Internal Collisions - Vulnerability of Checking Mechanism for RSA-Decryption. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 183–195. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Werner Schindler
    • 1
  • Kouichi Itoh
    • 2
  1. 1.Bundesamt für Sicherheit in der Informationstechnik (BSI)BonnGermany
  2. 2.Fujitsu Laboratories Ltd.Nakahara-kuJapan

Personalised recommendations