Advertisement

Abstract

In this paper, we propose a new lightweight block cipher called LBlock. Similar to many other lightweight block ciphers, the block size of LBlock is 64-bit and the key size is 80-bit. Our security evaluation shows that LBlock can achieve enough security margin against known attacks, such as differential cryptanalysis, linear cryptanalysis, impossible differential cryptanalysis and related-key attacks etc. Furthermore, LBlock can be implemented efficiently not only in hardware environments but also in software platforms such as 8-bit microcontroller. Our hardware implementation of LBlock requires about 1320 GE on 0.18 μm technology with a throughput of 200 Kbps at 100 KHz. The software implementation of LBlock on 8-bit microcontroller requires about 3955 clock cycles to encrypt a plaintext block.

Keywords

Block cipher Lightweight Hardware efficiency Design Cryptanalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology 7(4), 229–246 (1994)CrossRefMATHGoogle Scholar
  3. 3.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 12–23. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the Full KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
  6. 6.
    Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Biryukov, A., Nikolić, I.: Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    De Canniere, C., Preneel, B.: Trivium Specifications. eSTREAM submission, http://www.ecrypt.eu.org/stream/triviump3.html
  12. 12.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Dunkelman, O., Keller, N., Shamir, A.: A Practical-Time Attack on the A5/3 Cryptosystem Used in Third Generation GSM Telephony. Faculty of Mathematics and Computer Science Weizmann Institute of Science P.O. Box 26, Rehovot 76100, Israel (2010)Google Scholar
  14. 14.
    Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Izadi, M., Sadeghiyan, B., Sadeghian, S., Khanooki, H.: MIBS: A New Lightweight Block Cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 334–348. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Kim, J.-S., Hong, S.H., Sung, J., Lee, S.-J., Lim, J.-I., Sung, S.H.: Impossible differential cryptanalysis for block cipher structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Knudsen, L., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Variants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Lim, C.H.: A Revised Version of CRYPTON - CRYPTON V1.0 -. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 31–45. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  23. 23.
    Ojha, S.K., Kumar, N., Jain, K., Sangeeta: TWIS – A Lightweight Block Cipher. In: Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS, vol. 5905, pp. 280–291. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Park, J.: Security Analysis of mCrypton Proper to Low-cost Ubiquitous Computing Devices and Applications. International Journal of Communication Systems 22(8), 959–969 (2009)CrossRefGoogle Scholar
  26. 26.
    Parr, C., Poschmann, A., Robshaw, M.J.B.: New Designs in Lightweight Symmetric Encryption. In: Kitsos, P., Zhang, Y. (eds.) RFID Security: Techniques, Protocols and System-on-Chip Design, pp. 349–371. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Renauld, M., Standaert, F.-X.: Algebraic Side-Channel Attacks. Cryptology ePrint Archive, report 2009/179, http://eprint.iacr.org/2009/279
  28. 28.
    Robshaw, M.J.B.: Searching for Compact Algorithms: cgen. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 37–49. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit Blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: A Scalable Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Su, B., Wu, W., Zhang, L., Li, Y.: Full-Round Differential Attack on TWIS Block Cipher. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 234–242. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Suzaki, T., Minematsu, K.: Improving the Generalized Feistel. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Wheeler, D., Needham, R.: TEA, a Tiny Encryption Algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  34. 34.
    Wheeler, D., Needham, R.: TEA Extensions (October 1997) (Also Correction to XTEA. October 1998), www.ftp.cl.cam.ac.uk/ftp/users/djw3/
  35. 35.
    Yang, L., Wang, M., Qiao, S.: Side Channel Cube Attack on PRESENT. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 379–391. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    Bogdanov, A., Rechberger, C.: Generalized Meet-in-the-Middle Attacks: Cryptanalysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 228–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wenling Wu
    • 1
  • Lei Zhang
    • 1
  1. 1.State Key Laboratory of Information Security, Institute of SoftwareChinese Academy of SciencesBeijingP.R. China

Personalised recommendations