Simple and Efficient Single Round almost Perfectly Secure Message Transmission Tolerating Generalized Adversary

  • Ashish Choudhury
  • Kaoru Kurosawa
  • Arpita Patra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6715)

Abstract

Patra et al. (IJACT ’09) gave a necessary and sufficient condition for the possibility of almost perfectly secure message transmission protocols tolerating general, non-threshold\({\cal Q}^2\) adversary structure. However, their protocol requires at least three rounds and performs exponential (exponential in the size of the adversary structure) computation and communication. They have left it as an open problem to design efficient protocol for almost perfectly secure message transmission, tolerating \({\cal Q}^2\) adversary structure.

In this paper, we show the first single round almost perfectly secure message transmission protocol tolerating \({\cal Q}^2\) adversary structure. The computation and communication complexities of the protocol are both polynomial in the size of underlying linear secret sharing scheme (LSSS). This solves the open problem posed by Patra et al.

When we restrict our general protocol to a threshold adversary, we obtain a single round, communication optimal almost secure message transmission protocol tolerating threshold adversary, which is much more computationally efficient and relatively simpler than the previous single round, communication optimal protocol of Srinathan et al. (PODC ’08).

Keywords

Information theoretic security non-threshold adversary Byzantine corruption Efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, S., Cramer, R., de Haan, R.: Asymptotically optimal two-round perfectly secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 394–408. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Araki, T.: Almost secure 1-round message transmission scheme with polynomial-time message decryption. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 2–13. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA, May 2-4, pp. 1–10. ACM, New York (1988)Google Scholar
  4. 4.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty Unconditionally Secure Protocols (extended abstract). In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA, May 2-4, pp. 11–19. ACM, New York (1988)Google Scholar
  5. 5.
    Choudhary, A., Patra, A., Ashwinkumar, B.V., Srinathan, K., Rangan, C.P.: Perfectly Reliable and Secure Communication Tolerating Static and Mobile Mixed Adversary. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 137–155. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Choudhary, A., Patra, A., Ashwinkumar, B.V., Srinathan, K., Rangan, C.P.: On Minimal Connectivity Requirement for Secure Message Transmission in Asynchronous Networks. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408, pp. 148–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Choudhury, A.: Protocols for reliable and secure message transmission. Cryptology ePrint Archive, Report 2010/281 (2010)Google Scholar
  8. 8.
    Cramer, R., Damgård, I., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Desmedt, Y., Erotokritou, S., Safavi-Naini, R.: Simple and communication complexity efficient almost secure and perfectly secure message transmission schemes. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 166–183. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 502–517. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Desmedt, Y., Wang, Y., Burmester, M.: A complete characterization of tolerable adversary structures for secure point-to-point transmissions without feedback. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 277–287. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. JACM 40(1), 17–47 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fitzi, M., Franklin, M.K., Garay, J.A., Vardhan, S.H.: Towards optimal and efficient perfectly secure message transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 311–322. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Franklin, M., Wright, R.: Secure communication in minimal connectivity models. Journal of Cryptology 13(1), 9–30 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hirt, M., Maurer, U.M.: Complete Characterization of Adversaries Tolerable in Secure Multi-Party Computation. In: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, Santa Barbara, California, USA, August 21-24, pp. 25–34. ACM Press, New York (1997)CrossRefGoogle Scholar
  16. 16.
    Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Pandu Rangan, C.: On perfectly secure communication over arbitrary networks. In: Proceedings of the Twenty-First Annual ACM Symposium on Principles of Distributed Computing, PODC 2002, Monterey, California, USA, July 21-24, pp. 193–202. ACM, New York (2002)CrossRefGoogle Scholar
  17. 17.
    Kurosawa, K.: General error decodable secret sharing scheme and its application. Cryptology ePrint Archive, Report 2009/263 (2009)Google Scholar
  18. 18.
    Kurosawa, K.: Round-efficient perfectly secure message transmission scheme against general adversary. Cryptology ePrint Archive, Report 2010/450 (2010)Google Scholar
  19. 19.
    Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmission scheme. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 324–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmission scheme. IEICE Transactions 92-A(1), 105–112 (2009)CrossRefMATHGoogle Scholar
  21. 21.
    Patra, A., Choudhary, A., Pandu Rangan, C.: Constant phase efficient protocols for secure message transmission in directed networks. In: Gupta, I., Wattenhofer, R. (eds.) Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC 2007, Portland, Oregon, USA, 2007, August 12-15, pp. 322–323. ACM, New York (2007)CrossRefGoogle Scholar
  22. 22.
    Patra, A., Choudhary, A., Rangan, C.P.: Unconditionally reliable and secure message transmission in directed networks revisited. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 309–326. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Patra, A., Choudhary, A., Rangan, C.P.: On communication complexity of secure message transmission in directed networks. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.) ICDCN 2010. LNCS, vol. 5935, pp. 42–53. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Patra, A., Choudhary, A., Srinathan, K., Pandu Rangan, C.: Constant phase bit optimal protocols for perfectly reliable and secure message transmission. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 221–235. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Patra, A., Choudhary, A., Srinathan, K., Pandu Rangan, C.: Unconditionally reliable and secure message transmission in undirected synchronous networks: Possibility, feasibility and optimality. International Journal of Applied Cryptography 2(2), 159–197 (2010); A preliminary version appeared in [37] (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Patra, A., Choudhary, A., Vaidyanathan, M., Rangan, C.P.: Efficient perfectly reliable and secure message transmission tolerating mobile adversary. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 170–186. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Patra, A., Choudhury, A., Pandu Rangan, C.: Brief announcement: perfectly secure message transmissiontolerating mobile mixed adversary with reduced phase complexity. In: PODC, pp. 245–246 (2010)Google Scholar
  28. 28.
    Patra, A., Shankar, B., Choudhary, A., Srinathan, K., Rangan, C.P.: Perfectly secure message transmission in directed networks tolerating threshold and non threshold adversary. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 80–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, Seattle, Washigton, USA, May 14-17, pp. 73–85. ACM, New York (1989)Google Scholar
  30. 30.
    Sayeed, H., Abu-Amara, H.: Perfectly secure message transmission in asynchronous networks. In: Proceedings of 7th IEEE Symposium on Parallel and Distributed Processing, pp. 100–105. IEEE, Los Alamitos (1995)CrossRefGoogle Scholar
  31. 31.
    Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in synchronous networks. Information and Computation 126(1), 53–61 (1996)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Shor, P.W.: Polynomial time algorithms for Prime factorization and Discrete Logarithms on a Quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Srinathan, K.: Secure distributed communication. PhD Thesis, IIT Madras (2006)Google Scholar
  35. 35.
    Srinathan, K., Choudhary, A., Patra, A., Pandu Rangan, C.: Efficient Single Phase Unconditionally Secure Message Transmission with Optimum Communication Complexity. In: Bazzi, R.A., Patt-Shamir, B. (eds.) Proceedings of the Twenty-Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC 2008, Toronto, Canada, August 18-21, p. 457. ACM, New York (2008)CrossRefGoogle Scholar
  36. 36.
    Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal perfectly secure message transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  37. 37.
    Srinathan, K., Patra, A., Choudhary, A., Rangan, C.P.: Probabilistic perfectly reliable and secure message transmission – possibility, feasibility and optimality. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 101–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    Srinathan, K., Prasad, N.R., Pandu Rangan, C.: On the optimal communication complexity of multiphase protocols for perfect communication. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), Oakland, California, USA, May 20-23, pp. 311–320. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  39. 39.
    Srinathan, K., Raghavendra, P., Rangan, C.P.: On proactive perfectly secure message transmission. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 461–473. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  40. 40.
    Yang, Q., Desmedt, Y.: Cryptanalysis of secure message transmission protocols with feedback. In: Kurosawa, K. (ed.) Information Theoretic Security. LNCS, vol. 5973, pp. 159–176. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  41. 41.
    Yang, Q., Desmedt, Y.: General perfectly secure message transmission using linear codes. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 448–465. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ashish Choudhury
    • 1
  • Kaoru Kurosawa
    • 2
  • Arpita Patra
    • 3
  1. 1.Applied Statistics UnitIndian Statistical InstituteKolkataIndia
  2. 2.Department of Computer and Information SciencesIbaraki UniversityHitachiJapan
  3. 3.Department of Computer ScienceAarhus UniversityDenmark

Personalised recommendations