Hierarchical Identity-Based Chameleon Hash and Its Applications

  • Feng Bao
  • Robert H. Deng
  • Xuhua Ding
  • Junzuo Lai
  • Yunlei Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6715)

Abstract

At ACNS 2008, Canard et al. introduced the notion of trapdoor sanitizable signature (TSS) based on identity-based chameleon hash (IBCH). Trapdoor sanitizable signatures allow the signer of a message to delegate, at any time, the power of sanitization to possibly several entities who can modify predetermined parts of the message and generate a new signature on the sanitized message without interacting with the original signer. In this paper, we introduce the notion of hierarchical identity-based chameleon hash (HIBCH), which is a hierarchical extension of IBCH. We show that HIBCH can be used to construct other cryptographic primitives, including hierarchical trapdoor sanitizable signature (HTSS) and key-exposure free IBCH. HTSS allows an entity who has the sanitization power for a given signed message, to further delegate its power to its descendants in a controlled manner. Finally, we propose a concrete construction of HIBCH and show that it is t-threshold collusion-resistant.

Keywords

Chameleon Hash Trapdoor Sanitizable Signature Hierarchical Identity-Based Chameleon Hash Hierarchical Trapdoor Sanitizable Signature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable Signatures. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 216–233. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  6. 6.
    Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Perfectly secure key distribution for dynamic conferences. Inf. Comput. 146(1), 1–23 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  10. 10.
    Chen, X., Zhang, F., Kim, K.: Chameleon hashing without key exposure. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 87–98. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Chen, X., Zhang, F., Susilo, W., Tian, H., Li, J., Kim, K.: Identity-based chameleon hash scheme without key exposure. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 200–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Chen, X., Zhang, F., Tian, H., Wei, B., Kim, K.: Key-exposure free chameleon hashing and signatures based on discrete logarithm systems. Cryptology ePrint Archive, Report 2009/035 (2009), http://eprint.iacr.org/
  13. 13.
    Gao, W., Li, F., Wang, X.: Chameleon hash without key exposure based on schnorr signature. Computer Standards & Interfaces 31(2), 282–285 (2009)CrossRefGoogle Scholar
  14. 14.
    Gao, W., Wang, X., Xie, D.: Chameleon hashes without key exposure based on factoring. J. Comput. Sci. Technol. 22(1), 109–113 (2007)CrossRefGoogle Scholar
  15. 15.
    Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T., Reidt, S., Wolthusen, S.D.: Strongly-resilient and non-interactive hierarchical key-agreement in mANETs. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 49–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Izu, T., Kanaya, N., Takenaka, M., Yoshioka, T.: PIATS: A partially sanitizable signature scheme. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 72–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)Google Scholar
  21. 21.
    Micali, S., Rivest, R.L.: Transitive signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Miyazaki, K., Hanaoka, G., Imai, H.: Invisibly sanitizable digital signature scheme. IEICE Transactions 91-A(1), 392–402 (2008)CrossRefGoogle Scholar
  23. 23.
    Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S., Imai, H.: Digitally signed document sanitizing scheme with disclosure condition control. IEICE Transactions 88-A(1), 239–246 (2005)CrossRefGoogle Scholar
  24. 24.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Suzuki, T., Ramzan, Z., Fujimoto, H., Gentry, C., Nakayama, T., Jain, R.: A system for end-to-end authentication of adaptive multimedia content. In: Dittmann, J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005. LNCS, vol. 3677, pp. 237–249. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Tan, K.W., Deng, R.H.: Applying santitizable signature to web-service-enabled business processes: going beyond integrity protection. In: ICWS, pp. 67–74 (2009)Google Scholar
  27. 27.
    Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Zhang, F., Safavi-Naini, R., Susilo, W.: Id-based chameleon hashes from bilinear pairings. Cryptology ePrint Archive, Report 2003/208 (2003), http://eprint.iacr.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Feng Bao
    • 1
  • Robert H. Deng
    • 2
  • Xuhua Ding
    • 2
  • Junzuo Lai
    • 2
  • Yunlei Zhao
    • 3
  1. 1.Institute for Infocomm ResearchSingapore
  2. 2.Singapore Management UniversitySingapore
  3. 3.Fudan UniversityChina

Personalised recommendations