Advertisement

The Grammar of Graphics

  • Leland Wilkinson
Chapter
Part of the Springer Handbooks of Computational Statistics book series (SHCS)

Abstract

The Grammar of Graphics, or GOG, denotes a system with seven orthogonal components. By orthogonal, we mean there are seven graphical component sets whose elements are aspects of the general system and that every combination of aspects in the product of all these sets is meaningful. This sense of the word orthogonality, a term used by computer designers to describe a combinatoric system of components or building blocks, is in some sense similar to the orthogonal factorial analysis of variance (ANOVA), where factors have levels and all possible combinations of levels exist in the ANOVA design. If we interpret each combination of features in a GOG system as a point in a network, then the world described by GOG is represented in a seven-dimensional rectangular lattice.

Keywords

Statistical Graphic Algebraic Expression Graphic System Recursive Partitioning Graph Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abiteboul, S., Fischer, P.C., Schek, H.J.: Nested Relations and Complex Objects in Databases. Springer, New York (1989)zbMATHGoogle Scholar
  2. Agrawal, R., Gupta, A., Sarawagi, S.: Modeling multidimensional databases. In: Gray, A., Larson, P.-Å (eds.) Proceedings of 13th International Conference of Data Engineering (ICDE), IEEE Computer Society, pp. 232–243 (1997)Google Scholar
  3. Andrews, D.: Plots of high dimensional data. Biometrics 28, 125–136 (1972)Google Scholar
  4. Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, New York (1994)zbMATHGoogle Scholar
  5. Becker, R.A., Cleveland, W.S., Shyu, M.-J.: The design and control of trellis display. J. Comput. Stat. Graphics 5, 123–155 (1996)Google Scholar
  6. Bertin, J.: Smiologie Graphique. Editions Gauthier-Villars, Paris (1967)Google Scholar
  7. Date, C.: What is a domain? In: Date, C.: (eds.) Relational Database Writings 1985–1989, pp. 213–313. Addison-Wesley, Reading, MA (1990)Google Scholar
  8. Date, C.J., Darwen, H.: Relation-valued attributes. In: Date, C.J., Darwen, H. (eds.) Relational Database: Writings 1989-1991, pp. 75–98. Addison-Wesley, Reading, MA (1992)Google Scholar
  9. Feiner, S., Beshers, C.: Worlds within worlds: Metaphors for exploring n-dimensional virtual worlds. In: Proceedings of ACM UIST ’90. pp. 76–83. ACM Press, New York, NY (1990)Google Scholar
  10. Fisher, R.: Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh (1925)Google Scholar
  11. Fisher, R.: The Design of Experiments. Oliver and Boyd, Edinburgh (1935)Google Scholar
  12. Friedman, J.: Exploratory projection pursuit. J. Am. Stat. Assoc. 82, 249–266 (1987)zbMATHCrossRefGoogle Scholar
  13. Glymour, C., Madigan, D., Pregibon, D., Smyth, P.: Statistical inference and data mining. Comm. ACM 39(11), 35–41 (1996)CrossRefGoogle Scholar
  14. Gyssens, M., Lakshmanan, L.V.S., Subramanian, I.N.: Tables as a paradigm for querying and restructuring (extended abstract). In: Proceedings of the fifteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp. 93–103. ACM Press, Montreal, Quebec, Canada (1996)Google Scholar
  15. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining: Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA (2001)Google Scholar
  16. Hartigan, J., Kleiner, B.: Mosaics for contingency tables. In: Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface, pp. 268–273 (1981)Google Scholar
  17. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2001)zbMATHGoogle Scholar
  18. Heiberger, R.M.: Computation for the Analysis of Designed Experiments. Wiley, New York (1989)zbMATHGoogle Scholar
  19. Inselberg, A.: The plane with parallel coordinates. Visual Comput. 1, 69–91 (1984)CrossRefGoogle Scholar
  20. Johnson, B., Schneiderman, B.: Treemaps: A space-filling app. roach to the visualization of hierarchical information structures. In: Proceedings of the IEEE Information Visualization ’91, pp. 275–282 (1991)Google Scholar
  21. Kutner, M.H., Nachtschiem, C.J., Wasserman, W., Neter, J.: App.lied Linear Statistical Models, Richard D. Irwin, Incorporation, Homewood, IL (1996)Google Scholar
  22. Linhart, H., Zucchini, W.: Model Selection. Wiley, New York (1986)zbMATHCrossRefGoogle Scholar
  23. Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. (TOG) 5(2), 110–141 (1986)Google Scholar
  24. Makinouchi, A.: A consideration on normal form of not-necessarily-normalized relation in the relational model. In: Proceedings of the Third International Conference on Very Large Data Bases. pp. 447–453 (1977)Google Scholar
  25. Mendelssohn, R.C.: The bureau of labor statistic’s table producing language (TPL). In: Proceedings of the 1974 annual conference, Bureau of Labor Statistics, pp. 116–122. Washington, DC (1974)Google Scholar
  26. Mihalisin, T., Timlin, J., Schwegler, J.: Visualizing multivariate functions, data, and distributions. IEEE Computer Graphics and Applications. 11(13), 28–35 (1991)CrossRefGoogle Scholar
  27. Mosteller, F., Parunak, A.: Identifying extreme cells in a sizable contingency table: Probabilistic and exploratory app. roaches. In: Hoaglin, D.C., Mosteller, F., Tukey, J.W. (eds.) Exploring Data Tables, Trends, and Shapes, pp. 189–224. Wiley, New York (1985)Google Scholar
  28. Nelder, J.A.: The analysis of randomised experiments with orthogonal block structure (Parts I and II). Proc. Roy. Soc. Lond. Series A 283, 147–178 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  29. Norton, A., Rubin, M., Wilkinson, L.: Streaming graphics. Stat. Comput. Graph. Newsletter 12(1), 11–14 (2001)Google Scholar
  30. Pedersen, D., Riis, K., Pedersen, T.B.: A powerful and SQL-compatible data model and query language for OLAP. In: Proceedings of the thirteenth Australasian conference on Database technologies, Australian Computer Society, Incorporation, pp. 121–130. Melbourne, Victoria, Australia (2002)Google Scholar
  31. Ramsay, J., Silverman, B.: Functional Data Analysis. Springer, New York (1997)zbMATHGoogle Scholar
  32. Roth, S.F., Kolojejchick, J., Mattis, J., Chuah, M.C., Goldstein, J., Juarez, O.: SAGE tools: a knowledge-based environment for designing and perusing data visualizations. In: Proceedings of the CHI ’94 conference companion on Human factors in computing systems, pp. 27–28. ACM Press, Boston, Massachusetts, USA (1994)Google Scholar
  33. Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-driven exploration of OLAP data cubes. In: Proceedings of the Sixth International Conference on Extending Database Technology (EDBT) (1998)Google Scholar
  34. Shoshani, A.: OLAP and statistical databases: similarities and differences. In: Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp. 185–196. ACM Press, Tucson, Arizona, USA (1997)Google Scholar
  35. Simkin, D., Hastie, R.: An information processing analysis of graph perception. J. Am. Stat. Assoc. 82, 454–465 (1987)CrossRefGoogle Scholar
  36. Stevens, S.S.: On the theory of scales of measurement. Science 103, 677–680 (1946)zbMATHCrossRefGoogle Scholar
  37. Stolte, C., Tang, D., Hanrahan, P.: Polaris: A system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans. Visual. Comput. Graph. 8 1, 52–65 (2002)CrossRefGoogle Scholar
  38. Taylor, B.N.: The international system of units (SI). In: Special Publication 330, pp. 171–182. NIST, Washington, DC (1997)Google Scholar
  39. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley Publishing Company, Reading, MA (1977)zbMATHGoogle Scholar
  40. Wegman, E.J.: Hyperdimensional data analysis using parallel coordinates. J. Am. Stat. Assoc. 85, 664–675 (1985)CrossRefGoogle Scholar
  41. Wilkinson, G.N., Rogers, C.E.: Symbolic description of factorial models for analysis of variance. J. Roy. Stat. Soc. Series C 22, 392–399 (1973)Google Scholar
  42. Wilkinson, L.: A graph algebra. In: Computing Science and Statistics: Proceedings of the 28th Symposium on the Interface, pp. 341–351 (1996)Google Scholar
  43. Wilkinson, L.: The Grammar of Graphics. Springer, New York (1999)zbMATHGoogle Scholar
  44. Wilkinson, L., Rope, D., Carr, D., Rubin, M.: The language of graphics. J. Comput. Graph. Stat. 9, 530–543 (2000)MathSciNetGoogle Scholar
  45. Wills, G.: Using the java 2 platform for advanced information visualization. Unpublished paper presented at the Annual Java One conference (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.SYSTAT Software Inc.ChicagoUSA

Personalised recommendations