Velocity Measurement for Moving Surfaces by Using Spatial Filtering Technique Based on Array Detectors

  • Martin Schaeper
  • Nils Damaschke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6752)

Abstract

Spatial filtering velocimetry is an established measurement technique for process control e.g. measuring speed of moving surfaces. The technique uses optical gratings for filtering the velocity information. Usually optical transmission gratings as films or micro-lenticular arrays are used for generating the spatial filter. The article describes the spatial filtering technique by using structured detectors (CCD or CMOS-array), which reduces the optical setup significantly. The grating of the spatial filter is realized by weighting lines of pixels, possible for array detectors in different directions. After describing the technique and the realized system some measurement results are shown.

Keywords

spatial filter structured detector velocity measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, H.-E., et al.: Laser Doppler and Phase Doppler Measurement Techniques. In: Adrian, R.J., et al. (eds.) Experimental Fluid Mechanics, Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry. In: Adrian, R.J., et al. (eds.) Experimental Fluid Mechanics. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Gerald, A.S.F.: Photo-electric system, United States (1935)Google Scholar
  4. 4.
    Hancock, J.D., Meinema, H.E.: Camera for aerial photography, United States (1946)Google Scholar
  5. 5.
    Ator, J.T.: Image-Velocity Sensing with Parallel-Slit Reticles. J. Opt. Soc. Am. 53, 1416–1419 (1963)CrossRefGoogle Scholar
  6. 6.
    Aizu, Y., Asakura, T.: Principles and development of spatial filtering velocimetry. Applied Physics B: Lasers and Optics 43(4), 209–224 (1987)CrossRefGoogle Scholar
  7. 7.
    Jakobsen, M.L., Yura, H.T., Hanson, S.G.: Speckles and their dynamics for struc-tured target illumination: optical spatial filtering velocimetry. Journal of Optics A: Pure and Applied Optics 5(054001), 1464–4258 (2009)Google Scholar
  8. 8.
    Petrak, D., Rauh, H.: Micro-flow metering and viscosity measurement of low viscosity Newtonian fluids using a fibreoptical spatial filter technique. Flow Meas-urement and Instrumentation 20(2), 49–56 (2009)CrossRefGoogle Scholar
  9. 9.
    Michel, K.C., et al.: A novel spatial filtering velocimeter based on a photodetector array. IEEE Transactions on Instrumentation and Measurement 47(1), 299–303 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bergeler, S., Krambeer, H.: Novel optical spatial filtering methods based on two-dimensional photodetector arrays. Measurement Science and Technology 15(7), 1309–1315 (2004)CrossRefGoogle Scholar
  11. 11.
    Bergeler, S.: Einsatz optoelektronischer Flächensensoren in der ein- und zweidimensionalen Ortsfiltertechnik. Universität Rostock, Rostock (2002)Google Scholar
  12. 12.
    Pau, S., Dallas, W.J.: Generalized spatial filtering velocimetry and accelerometry for uniform and nonuniform objects. Applied Optics 48(24), 4713–4722 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Schaeper
    • 1
  • Nils Damaschke
    • 1
  1. 1.Institute of General Electrical EngineeringUniversity of RostockRostockGermany

Personalised recommendations