An Intelligent Agent for Determining Home Occupancy Using Power Monitors and Light Sensors

  • Stephen Makonin
  • Fred Popowich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6719)

Abstract

Smart homes of the future will have a number of different types of sensors. What types of sensors and how they will be used depends on the behaviour needed from the smart home. Using the sensors to automatically determine if a home is occupied can lead to a wide range of benefits. For example, it could trigger a change in the thermostat setting to save money, or even a change in security monitoring systems. Our prototype Home Occupancy Agent (HOA), which we present in this paper, uses a rule based system that monitors power consumption from meters and ambient light sensor readings in order to determine occupancy.

Keywords

Smart Homes Intelligent Agents Occupancy Detection Power Consumption Ambient Light Sensors Energy Conservation Sustainability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Enviroment canada weather office (2010), http://text.weatheroffice.gc.ca/canada_e.html
  2. 2.
    Sunrise and sunset calculator (2010), http://www.timeanddate.com/worldclock/sunrise.html
  3. 3.
    Abascal, J.: Ambient intelligence for people with disabilities and elderly people. In: ACM’s Special Interest Group on Computer-Human Interaction (SIGCHI), Ambient Intelligence for Scientific Discovery (AISD) Workshop, Vienna. Citeseer (2004)Google Scholar
  4. 4.
    Cook, D., Youngblood, M., Heierman III, E., Gopalratnam, K., Rao, S., Litvin, A., Khawaja, F.: Mavhome: An agent-based smart home. In: Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom 2003), pp. 521–524. IEEE, Los Alamitos (2003)Google Scholar
  5. 5.
    Das, S., Cook, D., Battacharya, A., Heierman III, E., Lin, T.: The role of prediction algorithms in the mavhome smart home architecture. IEEE Wireless Communications 9(6), 77–84 (2003)CrossRefGoogle Scholar
  6. 6.
    Intille, S., Larson, K., Tapia, E., Beaudin, J., Kaushik, P., Nawyn, J., Rockinson, R.: Using a live-in laboratory for ubiquitous computing research. Pervasive Computing 2006(4), 349–365 (2006)Google Scholar
  7. 7.
    Mohamaddoust, R., Haghighat, A., Kafash, M., Sharif, M.: Designing the lighting control system based on wsn with optimization of decision making algorithm. In: The International Conference on Computational Intelligence and Communication Networks, CICN 2010 (2010)Google Scholar
  8. 8.
    Moslehi, K., Kumar, R.: Vision for a self-healing power grid. ABB Review, 21–25 (2006)Google Scholar
  9. 9.
    Moslehi, K., Kumar, R.: Smart grid-a reliability perspective. In: Innovative Smart Grid Technologies (ISGT 2010), pp. 1–8. IEEE, Los Alamitos (2010)Google Scholar
  10. 10.
    Raad, M., Yang, L.: A ubiquitous smart home for elderly. Information Systems Frontiers 11(5), 529–536 (2009)CrossRefGoogle Scholar
  11. 11.
    Tapia, E., Intille, S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Pervasive Computing pp. 158–175 (2004)Google Scholar
  12. 12.
    Wilson, D., Wolfe, B., Atkeson, C.: Using many simple sensors for automatic monitoring in the home. Robotics Institute, Carnegie Mellon (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stephen Makonin
    • 1
  • Fred Popowich
    • 1
  1. 1.School of Computing ScienceSimon Fraser UniversityCanada

Personalised recommendations