On the Cover Scheduling Problem in Wireless Sensor Networks

  • André Rossi
  • Marc Sevaux
  • Alok Singh
  • Martin Josef Geiger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6701)


Cover scheduling for wireless sensor networks has attracted a lot of attention during the last decade. Many heuristic approaches and exact methods have been proposed for producing covers, i.e. subsets of sensors to be used at the same time. However, the actual schedule of the generated covers has never been explicitly addressed to the best of our knowledge. Though, this problem is of particular relevance when coverage breach is allowed in the aforementioned problems, i.e., when a full coverage of targets at any time is not mandatory. In that case, the objective of the wireless sensor network cover scheduling problem (WSN-CSP) is to schedule the covers so as to minimize the longest period of time during which a target is not covered in the schedule. In this paper, this problem is proved \(\mathcal NP\)-Hard, a MILP formulation is provided along with a greedy heuristic and a genetic algorithm based approach. Computational results show the effectiveness of the last approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akylidiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey of sensor network. IEEE Communication Magazine 40(8), 102–116 (2002)CrossRefGoogle Scholar
  2. 2.
    Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., Scarsi, R.: A discrete-time battery model for high-level power estimation. In: Proceedings of the IEEE Design Automation and Test in Europe conference, Paris, France, pp. 35–39 (2000)Google Scholar
  3. 3.
    Benini, L., Bruni, D., Macii, A., Macii, E., Poncino, M.: Discharge current steering for battery lifetime optimization. IEEE Transaction on computers 52(8), 985–995 (2003)CrossRefGoogle Scholar
  4. 4.
    Cheng, M.X., Ruan, L., Wu, W.: Achieving minimum coverage breach under bandwidth constraints in wireless sensor networks. In: INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 2638–2645 (2005)Google Scholar
  5. 5.
    Chow, K., Lui, K., Lam, E.: Wireless sensor networks scheduling for full angle coverage. Multidimensional Systems and Signal Processing 20, 101–119 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold (1991)Google Scholar
  7. 7.
    Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Proceedings of the 1991 Conference on Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann, San Francisco (1991)Google Scholar
  8. 8.
    Huang, C., Tseng, Y.: The coverage problem in a wireless sensor network. Mobile Networks and Applications 10, 519–528 (2005)CrossRefGoogle Scholar
  9. 9.
    Lin, J., Chen, Y.: Improving the coverage of randomized scheduling in wireless sensor networks. IEEE Transaction on Wireless Communications 7(12), 4807–4812 (2008)CrossRefGoogle Scholar
  10. 10.
    Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover operators on the travelling salesman problem. In: Proocedings of the second international conference on genetic algorithms, pp. 224–230. Erlbaum, Mahwah (1987)Google Scholar
  11. 11.
    Pinedo, M.: Scheduling: theory, Algorithms and Systems. Prentice-Hall, Englewood Cliffs (2008)MATHGoogle Scholar
  12. 12.
    Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.: Energy aware wireless microsensor networks. IEEE Signal Processing Magazine 19(2), 1007–1023 (2002)CrossRefGoogle Scholar
  13. 13.
    Rossi, A., Sevaux, M., Singh, A., Geiger, M.J.: The cover scheduling problem arising in wireless sensor networks. Research report RR-11-02-01, Université de Bretagne-Sud, Lorient, France (2011), http://www-labsticc.univ-ubs.fr/or/
  14. 14.
    Rossi, A., Singh, A., Sevaux, M.: Génération de colonnes et réseaux de capteurs sans fil. In: Proceedings of the ROADEF, 11ème congrès de la Société Française de Recherche Opérationnelle et d’Aide à la Décision, Toulouse, France, February 24-26 (2010)Google Scholar
  15. 15.
    Wang, C., Thai, M.T., Li, Y., Wang, F., Wu, W.: Optimization scheme for sensor coverage scheduling with bandwidth constraints. Optimization letters 3(1), 63–75 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • André Rossi
    • 1
    • 2
  • Marc Sevaux
    • 1
    • 3
  • Alok Singh
    • 2
  • Martin Josef Geiger
    • 3
  1. 1.Lab-STICCUniversité de Bretagne-SudLorientFrance
  2. 2.Department of Computer and Information SciencesUniversity of HyderabadHyderabadIndia
  3. 3.Logistics Management DepartmentHelmut Schmidt UniversityHamburgGermany

Personalised recommendations