Recoverable Robust Knapsacks: Γ-Scenarios

  • Christina Büsing
  • Arie M. C. A. Koster
  • Manuel Kutschka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6701)


In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty of the item weights follows the approach of Bertsimas and Sim [3, 4]. In contrast to the robust approach, a limited recovery action is allowed, i.e., up to k items may be removed when the actual weights are known. This problem is motivated by the assignment of traffic nodes to antennas in wireless network planning. Starting from an exponential min-max optimization model, we derive an integer linear programming formulation of quadratic size. In a preliminary computational study, we evaluate the gain of recovery using realistic planning data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of some combinatorial optimization problems: a survey (2007),
  2. 2.
    Bellman, R.: Notes on the theory of dynamic programming IV - maximization over discrete sets. Naval Research Logistics Quarterly 3, 67–70 (1956)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Mathematical Programming Ser. B 98, 49–71 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bertsimas, D., Sim, M.: The Price of Robustness. Operations Research 52(1), 35–53 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Büsing, C.: Recoverable Robustness in Combinatorial Optimization. Ph.D. thesis, Technische Universität Berlin (to appear, 2011)Google Scholar
  6. 6.
    Büsing, C., Koster, A.M.C.A., Kutschka, M.: Recoverable robust knapsacks: the discrete scenario case. Optimization Letters, Online First (2011),
  7. 7.
    Claßen, G., Koster, A.M.C.A., Schmeink, A.: Planning wireless networks with demand uncertainty using robust optimization. Optimization Online Eprint server (2011),
  8. 8.
    Engels, A., Reyer, M., Mathar, R.: Profit-oriented combination of multiple objectives for planning and configuration of 4G multi-hop relay networks. In: 7th International Symposium on Wireless Communication Systems (IEEE ISWCS), York, UK, pp. 330–334 (2010)Google Scholar
  9. 9.
    ILOG: CPLEX version 12.2 (2010),
  10. 10.
    Karp, R.: Reducibility among combinatorial problems. Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  11. 11.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Klopfenstein, O., Nace, D.: Valid inequalities for a robust knapsack polyhedron - Application to the robust bandwidth packing problem. Networks (to appear, 2010)Google Scholar
  13. 13.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations (1990)Google Scholar
  14. 14.
    Wolsey, L.A.: Integer Programming. Wiley, Chichester (1998)MATHGoogle Scholar
  15. 15.
    Yu, G.: On the max-min 0-1 knapsack problem with robust optimization applications. Operations Research 44, 407–415 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christina Büsing
    • 1
  • Arie M. C. A. Koster
    • 2
  • Manuel Kutschka
    • 2
  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany
  2. 2.Lehrstuhl II für MathematikRWTH Aachen UniversityAachenGermany

Personalised recommendations