Advertisement

An Exact Algorithm for Robust Network Design

  • Christoph Buchheim
  • Frauke Liers
  • Laura Sanità
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6701)

Abstract

Modern life heavily relies on communication networks that operate efficiently. A crucial issue for the design of communication networks is robustness with respect to traffic fluctuations, since they often lead to congestion and traffic bottlenecks. In this paper, we address an NP-hard single commodity robust network design problem, where the traffic demands change over time. For k different times of the day, we are given for each node the amount of single-commodity flow it wants to send or to receive. The task is to determine the minimum-cost edge capacities such that the flow can be routed integrally through the net at all times. We present an exact branch-and-cut algorithm, based on a decomposition into biconnected network components, a clever primal heuristic for generating feasible solutions from the linear-programming relaxation, and a general cutting-plane separation routine that is based on projection and lifting. By presenting extensive experimental results on realistic instances from the literature, we show that a suitable combination of these algorithmic components can solve most of these instances to optimality. Furthermore, cutting-plane separation considerably improves the algorithmic performance.

Keywords

Feasible Solution Network Design Exact Algorithm Network Design Problem Virtual Private Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ABACUS – A Branch-And-CUt System, http://www.informatik.uni-koeln.de/abacus
  2. 2.
    LEDA – Library of Efficient Data Types and Algorithms, http://www.algorithmic-solutions.com
  3. 3.
    ILOG CPLEX 12.1 (2009), http://www.ilog.com/products/cplex
  4. 4.
    SCIL 0.9 (2011), http://www.scil-opt.net
  5. 5.
    Altin, A., Amaldi, E., Belotti, P., Pinar, M.: Provisioning virtual private networks under traffic uncertainty. Networks 49(1), 100–115 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Applegate, A., Bixby, R., Chvátal, V., Cook, W.: TSP cuts which do not conform to the template paradigm. In: Jünger, M., Naddef, D. (eds.) Computational Combinatorial Optimization. LNCS, vol. 2241, pp. 261–304. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Ben-Ameur, W., Kerivin, H.: Routing of uncertain demands. Optimization and Engineering 3, 283–313 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buchheim, C., Liers, F., Oswald, M.: Local cuts revisited. Operations Research Letters 36(4), 430–433 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Buchheim, C., Liers, F., Oswald, M.: Speeding up IP-based algorithms for constrained quadratic 0–1 optimization. Mathematical Programming (Series B) 124(1-2), 513–535 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chekuri, C.: Routing and network design with robustness to changing or uncertain traffic demands. SIGACT News 38(3), 106–128 (2007)CrossRefGoogle Scholar
  11. 11.
    Chvátal, V.: Linear programming. Series of books in the mathematical sciences. W.H. Freeman, New York (1983)zbMATHGoogle Scholar
  12. 12.
    Duffield, N., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K., van der Merwe, J.: A flexible model for resource management in virtual private networks. Proceedings of SIGCOMM 29, 95–108 (1999)CrossRefGoogle Scholar
  13. 13.
    Eisenbrand, F., Grandoni, F., Oriolo, G., Skutella, M.: New approaches for virtual private network design. SIAM Journal on Computing, 706–721 (2007)Google Scholar
  14. 14.
    Erlebach, T., Rüegg, M.: Optimal bandwidth reservation in hose-model VPNs with multi-path routing. Proceedings of INFOCOM 4, 2275–2282 (2004)Google Scholar
  15. 15.
    Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 448–455 (2003)Google Scholar
  16. 16.
    Fingerhut, J., Suri, S., Turner, J.: Designing least-cost nonblocking broadband networks. Journal of Algorithms 24(2), 287–309 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fiorini, S., Oriolo, G., Sanità, L., Theis, D.: The VPN problem with concave costs. SIAM Journal on Discrete Mathematics, 1080–1090 (2010)Google Scholar
  18. 18.
    Gomory, R., Hu, T.: Multi-terminal network flow. SIAM Journal on Applied Mathematics 9, 551–570 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goyal, N., Olver, N., Shepherd, B.: The VPN conjecture is true. In: Proceedings of STOC, pp. 443–450 (2008)Google Scholar
  20. 20.
    Gupta, A., Kleinberg, J., Rastogi, R., Yener, B.: Provisioning a virtual private network: A network design problem for multicommodity flow. In: Proceedings of STOC, pp. 389–398 (2001)Google Scholar
  21. 21.
    Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network design. In: Proceedings of STOC, pp. 365–372 (2003)Google Scholar
  22. 22.
    Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS) (1998)Google Scholar
  23. 23.
    Labbe, M., Séguin, R., Soriano, P., Wynants, C.: Network synthesis with non-simultaneous multicommodity flow requirements: Bounds and heuristics (1999)Google Scholar
  24. 24.
    Magnanti, T., Raghavan, S.: Strong formulations for network design problems with connectivity requirements. Networks 45, 61–79 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Magnanti, T., Wang, Y.: Polyhedral properties of the network restoration problem with the convex hull of a special case. Tech. rep., Operations Research Center, MIT (1997)Google Scholar
  26. 26.
    Minoux, M.: Robust network optimization under polyhedral demand uncertainty is NP-hard. Discrete Applied Mathematics, 597–603 (2010)Google Scholar
  27. 27.
    Sanità, L.: Robust Network Design. Ph.D. Thesis, Università Sapienza di Roma (2009)Google Scholar
  28. 28.
    Sridhar, S., Chandrasekaran, R.: Integer solution to synthesis of communication networks. Mathematics of Operations Research 3, 581–585 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christoph Buchheim
    • 1
  • Frauke Liers
    • 2
  • Laura Sanità
    • 3
  1. 1.Fakultät für MathematikTechnische Universität DortmundDortmundGermany
  2. 2.Institut für InformatikUniversität zu KölnKölnGermany
  3. 3.Institute of MathematicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations