Assessing Task-Based Video Quality — A Journey from Subjective Psycho-Physical Experiments to Objective Quality Models

  • Mikołaj Leszczuk
Part of the Communications in Computer and Information Science book series (CCIS, volume 149)

Abstract

This paper reviews the development of techniques for assessing video quality. Examples have been provided on the quality of video applications ranging from popular entertainment to new trends such as applications in broad public systems, not just those used by police forces but also for medical purposes. In particular, the author introduces two typical usages of task-based video: surveillance video for accurate licence plate recognition, and medical video for credible diagnosis prior to bronchoscopic surgery. The author also presents the field of task-based video quality assessment from subjective psycho-physical experiments to objective quality models. Example test results and models are provided alongside the descriptions.

Keywords

video quality experiments models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartkowiak, M., Domanski, M.: Applications of chrominance vector quantization to intraframe and interframe compression of colour video sequences (2001)Google Scholar
  2. 2.
    Duplaga, M., Leszczuk, M., Papir, Z., Przelaskowski, A.: Evaluation of quality retaining diagnostic credibility for surgery video recordings. In: Sebillo, M., Vitiello, G., Schaefer, G. (eds.) VISUAL 2008. LNCS, vol. 5188, pp. 227–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Transactions on Communications 43(12), 2959–2965 (1995), http://dx.doi.org/10.1109/26.477498 CrossRefGoogle Scholar
  4. 4.
    ITU-T: Methods for subjective determination of transmission quality. ITU-T, Geneva, Switzerland (1996)Google Scholar
  5. 5.
    ITU-T: Subjective Video Quality Assessment Methods for Multimedia Applications. ITU-T (1999)Google Scholar
  6. 6.
    ITU-T: Recommendation 912: Subjective video quality assessment methods for recognition tasks. ITU-T Rec. P.912 (2008)Google Scholar
  7. 7.
    Janowski, L., Romaniak, P.: QoE as a function of frame rate and resolution changes. In: Zeadally, S., Cerqueira, E., Curado, M., Leszczuk, M. (eds.) FMN 2010. LNCS, vol. 6157, pp. 34–45. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Leszczuk, M., Grega, M.: Prototype software for video summary of bronchoscopy procedures with the use of mechanisms designed to identify, index and search. In: Piętka, E., Kawa, J. (eds.) Information Technologies in Biomedicine. AISC, vol. 69, pp. 587–598. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Leszczuk, M.: Analiza mozliwosci budowy internetowych aplikacji dostepu do cyfrowych bibliotek wideo. Ph.D. thesis, AGH University of Science and Technology, Krakow (April 2006)Google Scholar
  10. 10.
    Leszczuk, M., Janowski, L., Romaniak, P., Glowacz, A., Mirek, R.: Quality assessment for a licence plate recognition task based on a video streamed in limited networking conditions. In: Fourth Multimedia Communications, Services and Security (MCSS 2011), Krakow, Poland, pp. 10–18 (June 2011)Google Scholar
  11. 11.
    Przelaskowski, A.: Falkowe metody kompresji danych obrazowych. Ph.D. thesis, Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw (2002)Google Scholar
  12. 12.
    Skarbek, W.: Multimedia — algorytmy i standardy. PLJ, Warsaw (1998)Google Scholar
  13. 13.
    Takahashi, A., Schmidmer, C., Lee, C., Speranza, F., Okamoto, J., Brunnström, K., Janowski, L., Barkowsky, M., Pinson, M., Staelens, Nicolas Huynh Thu, Q., Green, R., Bitto, R., Renaud, R., Borer, S., Kawano, T., Baroncini, V., Dhondt, Y.: Report on the validation of video quality models for high definition video content. Tech. rep., Video Quality Experts Group (June 2010)Google Scholar
  14. 14.
    VQEG: The Video Quality Experts Group, http://www.vqeg.org/
  15. 15.
    Wang, Z., Lu, L., Bovik, A.C.: Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication 19(2), 121–132 (2004), http://dx.doi.org/10.1016/S0923-5965(03)00076-6%20Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mikołaj Leszczuk
    • 1
  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations