A Novel Strategy for Improving the Quality of Embedded Zerotree Wavelet Images Transmitted over Alamouti Coding Systems

  • Josmary Labrador
  • Paula M. Castro
  • Héctor J. Pérez–Iglesias
  • Adriana Dapena
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6691)


This work deals with the transmission of images, previously coded using the Embedded Zerotree Wavelet (EZW) transform, over wireless systems in which Space-Time Coding (STC) is used. It is shown how the system performance, measured in terms of Peak Signal to Noise Ratio (PSNR), can be improved using bit allocation strategies that take into account the special structure of the EZW bitstream, where the bits firstly allocated are associated to the lowest frequency subbands, and therefore, an error–free transmission of such bits will be crucial to appropriately recover the transmitted image.


Artificial neural networks learning rules EZW transform Alamouti coding PSNR metric image processing bit allocation channel estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taubman, D.S., Marcellin, M.W.: JPEG2000 Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  2. 2.
    Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing 41(12), 3445–3462 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alamouti, S.M.: A Simple Transmit Diversity Technique for Wireless Communications. IEEE Journal Select. Areas Communications 16, 1451–1458 (1998)CrossRefGoogle Scholar
  4. 4.
    Budianu, C., Tong, L.: Channel Estimation for Space-Time Orthogonal Block Codes. In: Proc. of International Conference on communications, pp. 1127–1131 (2001)Google Scholar
  5. 5.
    Naguib, A.F., Tarokh, V., Seshadri, N., Calderbank, A.R.: A Space-Time Coding Modem for High-Data-Rate Wireless. IEEE Journal on Selected Areas in Communications 16(8), 1459–1478 (1998)CrossRefGoogle Scholar
  6. 6.
    Comon, P., Jutten, C.: Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press, London (2010)Google Scholar
  7. 7.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, Basingstoke (1994)zbMATHGoogle Scholar
  8. 8.
    Shahbazpanahi, S., Gershman, A.B., Manton, J.: Closed-form Blind MIMO Channel Estimation for Orthogonal Space-Time Block Codes. IEEE Trans. on Signal Processing 53(12), 4506–4516 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pérez-Iglesias, H.J., García-Naya, J.A., Dapena, A., Castedo, L., Zarzoso, V.: Blind Channel Identification in Alamouti Coded Systems: A Comparative Study of Eigendecomposition Methods in Indoor Transmissions at 2.4 GHz. European Transactions on Telecomunications (Special Issue) 19(7), 751–759 (2008)CrossRefGoogle Scholar
  10. 10.
    Vía, J., Santamaría, I., Pérez, J., Ramírez, D.: Blind Decoding of MISO-OSTBC Systems based on Principal Component Analysis. In: Proc. of International Conference on Acoustic, Speech and Signal Processing, vol. IV, pp. 545–549 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Josmary Labrador
    • 1
  • Paula M. Castro
    • 1
  • Héctor J. Pérez–Iglesias
    • 1
  • Adriana Dapena
    • 1
  1. 1.Department of Electronics and SystemsUniversity of A CoruñaCoruñaSpain

Personalised recommendations