Sliding Empirical Mode Decomposition for On-line Analysis of Biomedical Time Series

  • A. Zeiler
  • R. Faltermeier
  • A. M. Tomé
  • C. Puntonet
  • A. Brawanski
  • E. W. Lang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6691)

Abstract

Biomedical signals are in general non-linear and non-stationary. Empirical Mode Decomposition in conjunction with Hilbert-Huang Transform provides a fully adaptive and data-driven technique to extract Intrinsic Mode Functions (IMFs). The latter represent a complete set of orthogonal basis functions to represent non-linear and non-stationary time series. Large scale biomedical time series necessitate an on-line analysis which is presented in this contribution. It shortly reviews the technique of EMD and related algorithms, discusses the newly proposed slidingEMD algorithm and presents some applications to biomedical time series from neuromonitoring.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flandrin, P., Gonçalvès, P., Rilling, G.: Detrending and denoising with empirical mode decmposition. In: EUSIPCO 2004, pp. 1581–1584 (2004)Google Scholar
  2. 2.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.L., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Roy. Soc. London A 454, 903–995 (1998)CrossRefMATHGoogle Scholar
  3. 3.
    Quiroga, R.Q., Arnhold, J., Grassberger, P.: Learning driver-response relationships from synchronization patterns. Phys. Rev. E 61, 5142 (2000)CrossRefGoogle Scholar
  4. 4.
    Quiroga, R.Q., Kraskov, A., Kreuz, T., Grassberger, P.: Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys. Rev. E 65, 041903 (2002)CrossRefGoogle Scholar
  5. 5.
    Rilling, G., Flandrin, P., Goncalès, P.: On empirical mode decomposition and its algorithms. In: Proc. 6th IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (2003)Google Scholar
  6. 6.
    Wu, M.-C., Struzik, Z.R., Watanabe, E., Yamamoto, Y., Hu, C.-K.: Temporal evolution for the phase histogram of ECG during human ventricular fibrillation. In: AIP Conf. Proc., vol. 922, pp. 573–576 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. Zeiler
    • 1
  • R. Faltermeier
    • 2
  • A. M. Tomé
    • 3
  • C. Puntonet
    • 4
  • A. Brawanski
    • 2
  • E. W. Lang
    • 1
  1. 1.CIML Group, BiophysicsUniversity of RegensburgRegensburgGermany
  2. 2.Clinic of NeurosurgeryUniversity Hospital RegensburgRegensburgGermany
  3. 3.DETI/IEETAUniversidade de AveiroAveiroPortugal
  4. 4.DATC, EEISUniversidad de GranadaGranadaSpain

Personalised recommendations