Differential Evolution Optimization of 3D Topological Active Volumes

  • J. Novo
  • J. Santos
  • M. G. Penedo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6691)

Abstract

The Topological Active Volumes is an active model focused on 3D segmentation tasks. It provides information about the surfaces and the inside of the detected objects in the scene. The segmentation process turns into a minimization task of the energy functions which control the model deformation. We used Differential Evolution as an alternative evolutionary method that minimizes the decisions of the designer with respect to other evolutionary methods such as genetic algorithms. Moreover, we hybridized Differential Evolution with a greedy search to integrate the advantages of global and local searches at the same time that the segmentation speed is improved. Moreover, we included in the local search the possibility of topological changes to perform a better adjustment in complex surfaces.

Keywords

Deformable contours Genetic algorithms Differential evolution Image segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsumiyama, K.S.Y., Yamamoto, K.: Active net: Active net model for region extraction. IPSJ SIG notes 89(96), 1–8 (1989)Google Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(2), 321–323 (1988)CrossRefMATHGoogle Scholar
  3. 3.
    Barreira, N., Penedo, M.G.: Topological Active Volumes. EURASIP Journal on Applied Signal Processing 13(1), 1937–1947 (2005)Google Scholar
  4. 4.
    Ballerini, L.: Medical image segmentation using genetic snakes. In: Proceedings of SPIE: Application and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation II, vol. 3812, pp. 13–23 (1999)Google Scholar
  5. 5.
    Séguier, R., Cladel, N.: Genetic snakes: Application on lipreading. In: International Conference on Artificial Neural Networks and Genetic Algorithms (2003)Google Scholar
  6. 6.
    Ibáñez, O., Barreira, N., Santos, J., Penedo, M.G.: Genetic approaches for topological active nets optimization. Pattern Recognition 42, 907–917 (2009)CrossRefMATHGoogle Scholar
  7. 7.
    Bro-Nielsen, M.: Active nets and cubes. Technical Report 13, IMM, Technical University of Denmark (1994)Google Scholar
  8. 8.
    Novo, J., Barreira, N., Santos, J., Penedo, M.G.: Topological active volumes optimization with genetic approaches. In: XII Conference of the Spanish Association for the Artificial Intelligence, vol. 2, pp. 41–50 (2007)Google Scholar
  9. 9.
    Price, K.V., Storn, R.M.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution. A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)MATHGoogle Scholar
  11. 11.
    Feoktistov, V.: Differential Evolution: In Search of Solutions. Springer, NY (2006)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. Novo
    • 1
  • J. Santos
    • 1
  • M. G. Penedo
    • 1
  1. 1.Computer Science DepartmentUniversity of A CoruñaSpain

Personalised recommendations