Supporting System for Detecting Pathologies

  • Carolina Zato
  • Juan F. De Paz
  • Fernando de la Prieta
  • Beatriz Martín
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6692)


Arrays CGH make possible the realization of tests on patients for the detection of mutations in chromosomal regions. Detecting these mutations allows to carry out diagnoses and to complete studies of sequencing in relevant regions of the DNA. The analysis process of arrays CGH requires the use of mechanisms that facilitate the data processing by specialized personnel since traditionally, a segmentation process is needed and starting from the segmented data, a visual analysis of the information is carried out for the selection of relevant segments. In this study a CBR system is presented as a supporting system for the extraction of relevant information in arrays CGH that facilitates the process of analysis and its interpretation.


CGH arrays knowledge extraction visualization CBR system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aha, D., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)Google Scholar
  2. 2.
    Akhbardeh, A., Nikhil, Koskinenb, P.E., Yli-Harja, O.: Towards the experimental evaluation of novel supervised fuzzy adaptive resonance theory for pattern classification. Pattern Recognition Letters 29(8), 1082–1093 (2008)CrossRefGoogle Scholar
  3. 3.
    Bajo, J., De Paz, J.F., Rodríguez, S., González, A.: A new clustering algorithm applying a hierarchical method neural network. Logic Journal of IGPL (in Press)Google Scholar
  4. 4.
    Breiman, L., Fried, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth International Group, Belmont (1984)zbMATHGoogle Scholar
  5. 5.
    Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1984)zbMATHGoogle Scholar
  6. 6.
    Brown, P.O., Botstein, D.: Exploring the new world of the genome with DNA microarrays. Nature Genetics 21, 33–37 (1999)CrossRefGoogle Scholar
  7. 7.
    Chen, W., Erdogan, F., Ropers, H., Lenzner, S., Ullmann, R.: CGHPRO- a comprehensive data analysis tool for array CGH. BMC Bioinformatics 6(85), 299–303 (2005)Google Scholar
  8. 8.
    Cohen, W.W.: Fast effective rule induction. In: Proceedings of the 12th International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann, San Francisco (1995)Google Scholar
  9. 9.
    De Haan, J.R., Bauerschmidt, S., van Schaik, R.C., Piek, E., Buydens, L.M.C., Wehrens, R.: Robust ANOVA for microarray data. Chemometrics and Intelligent Laboratory Systems 98(1), 38–44 (2009)CrossRefGoogle Scholar
  10. 10.
    Duda, R.O., Hart, P.: Pattern classification and Scene Analysis. John Wisley & Sons, New York (1973)zbMATHGoogle Scholar
  11. 11.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, pp. 148–156 (1996)Google Scholar
  12. 12.
    Fritzke, B.: A growing neural gas network learns topologies. Advances in Neural Information Processing Systems 7, 625–632 (1995)Google Scholar
  13. 13.
    Fritzke, B.: Fast Learning with Incremental RBF Networks. Neural Processing Letters 1(1), 2–5 (1994)CrossRefGoogle Scholar
  14. 14.
    Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Applied Statistics 28, 100–108 (1979)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hofmann, W.A., Weigmann, A., Tauscher, M., Skawran, B., Focken, T., Buurman, R., Wingen, L.U., Schlegelberger, B., Steinemann, D.: Analysis of Array-CGH Data Using the R and Bioconductor Software Suite. Comparative and Functional Genomics, Article ID 201325 (2009)Google Scholar
  16. 16.
    Holmes, G., Hall, M., Prank, E.: Generating Rule Sets from Model Trees. In: Advanced Topics in Artificial Intelligence, vol. 1747/1999, pp. 1–12 (2007)Google Scholar
  17. 17.
    Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Machine Learning 11, 63–91 (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kim, S.Y., Nam, S.W., Lee, S.H., Park, W.S., Yoo, N.J., Lee, J.Y., Chung, Y.J.: ArrayCyGHt, a web application for analysis and visualization of array-CGH data. Bioinformatics 21(10), 2554–2555 (2005)CrossRefGoogle Scholar
  20. 20.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics, 59–69 (1982)Google Scholar
  21. 21.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)CrossRefzbMATHGoogle Scholar
  22. 22.
    Brunelli, R.: Histogram Analysis for Image Retrieval. Pattern Recognition 34, 1625–1637 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Lima, C.A.M., Coelho, A.L.V., Von Zuben, F.J.: Hybridizing mixtures of experts with support vector machines: Investigation into nonlinear dynamic systems identification. Information Sciences 177(10), 2049–2074 (2007) CrossRefGoogle Scholar
  24. 24.
    Lingjaerde, O.C., Baumbush, L.O., Liestol, K., Glad, I.K., Borresen-Dale, A.L.: CGH-explorer, a program for analysis of array-CGH data. Bioinformatics 21(6), 821–822 (2005)CrossRefGoogle Scholar
  25. 25.
    Mantripragada, K.K., Buckley, P.G., Diaz de Stahl, T., Dumanski, J.P.: Genomic microarrays in the spotlight. Trends Genetics 20(2), 87–94 (2004)CrossRefGoogle Scholar
  26. 26.
    Martinetz, T., Schulten, K.: A neural-gas network learns topologies. Artificial Neural Networks 1, 397–402 (1991)Google Scholar
  27. 27.
    Menten, B., Pattyn, F., De Preter, K., Robbrecht, P., Michels, E., Buysse, K., Mortier, G., De Paepe, A., van Vooren, S., Vermeesh, J., et al.: ArrayCGHbase: an analysis platform for comparative genomic hybridization microarrays. BMC Bioinformatics 6(124), 179–187 (2006)Google Scholar
  28. 28.
    Nguyena, M.H., Abbassa, H.A., Mckay, R.I.: A novel mixture of experts model based on cooperative coevolution. Neurocomputing 70, 155–163 (2006)CrossRefGoogle Scholar
  29. 29.
    Pinkel, D., Albertson, D.G.: Array comparative genomic hybridization and its applications in cancer. Nature Genetics 37, 11–17 (2005)CrossRefGoogle Scholar
  30. 30.
    Po, R.W., Guh, Y.Y., Yang, M.S.: A new clustering approach using data envelopment analysis. European Journal of Operational Research 199(1), 276–284 (2009)CrossRefzbMATHGoogle Scholar
  31. 31.
    Quinlan, J.R.: C4.5: Programs For Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  32. 32.
    Rosa, P., Viara, E., Hupé, P., Pierron, G., Liva, S., Neuvial, P., Brito, I., Lair, S., Servant, N., Robine, N., Manié, E., Brennetot, C., Janoueix-Lerosey, I., Raynal, V., Gruel, N., Rouveirol, C., Stransky, N., Stern, M., Delattre, O., Aurias, A., Radvanyi, F., Barillot, E.: VAMP: Visualization and analysis of array-CGH, transcriptome and other molecular profiles Bioinformatics. Bioinformatics 22(17), 2066–2073 (2006)CrossRefGoogle Scholar
  33. 33.
    Saitou, N., Nie, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)Google Scholar
  34. 34.
    Savitha, R., Suresh, S., Sundararajan, N.: A fully complex-valued radial basis function network and its learning algorithm. Int. Journal of Neural Systems. 19(4), 253–267 (2009)CrossRefGoogle Scholar
  35. 35.
    Smith, M.L., Marioni, J.C., Hardcastle, T.J., Thorne, N.P.: snapCGH: Segmentation, Normalization and Processing of aCGH Data Users’ Guide. Bioconductor (2006)Google Scholar
  36. 36.
    Wang, P., Young, K., Pollack, J., Narasimham, B., Tibshirani, R.: A method for callong gains and losses in array CGH data. Biostat. 6(1), 45–58 (2005)CrossRefzbMATHGoogle Scholar
  37. 37.
    Willenbrock, H., Fridlyand, J.: A comparison study: applying segmentation to array CGH data for downstream analyses. Bioinformatics 21(22), 4084–4091 (2005)CrossRefGoogle Scholar
  38. 38.
    Xia, X., McClelland, M., Wang, Y.: WebArray, an online platform for microarray data analysis. BMC Bionformatics 6(306), 1737–1745 (2005)Google Scholar
  39. 39.
    Ylstra, B., Van den Ijssel, P., Carvalho, B., Meijer, G.: BAC to the future! or oligonucleotides: a perspective for microarray comparative genomic hybridization (array CGH). Nucleic Acids Research 34, 445–450 (2006)CrossRefGoogle Scholar
  40. 40.
    Yue, S., Wang, C.: The influence of serial correlation on the Mann-Whitney test for detecting a shift in median. Advances in Water Resources 25(3), 325–333 (2002)CrossRefGoogle Scholar
  41. 41.
    Zhanga, H., Lu, J.: Creating ensembles of classifiers via fuzzy clustering and deflection. Fuzzy Sets and Systems 161(13), 1790–1802 (2010)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Kruskal, W., Wallis, W.: Use of ranks in one-criterion variance analysis. Journal of American Statistics Association (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carolina Zato
    • 1
  • Juan F. De Paz
    • 1
  • Fernando de la Prieta
    • 1
  • Beatriz Martín
    • 1
  1. 1.Department of Computer Science and AutomationUniversity of SalamancaSalamancaSpain

Personalised recommendations