Advertisement

Non-deterministic Algebraic Structures for Soft Computing

  • I. P. Cabrera
  • P. Cordero
  • M. Ojeda-Aciego
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6692)

Abstract

The need of considering non-determinism in theoretical computer science has been claimed by several authors in the literature. The notion of non-deterministic automata as a formal model of computation is widely used, but the specific study of non-determinism is useful, for instance, for natural language processing, in describing interactive systems, for characterizing the flexibility allowed in the design of a circuit or a network, etc. The most suitable structures for constituting the foundation of this theoretical model of computation are non-deterministic algebras. The interest on these generalized algebras has been growing in recent years, both from a crisp and a fuzzy standpoint. This paper presents a survey of these structures in order to foster its applicability for the development of new soft computing techniques.

Keywords

Non-determinism multialgebras hyperalgebras non-deterministic algebras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ameri, R., Nozari, T.: Fuzzy hyperalgebras. Computers and Mathematics with Applications 61(2), 149–154 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bělohlávek, R.: Determinism and fuzzy automata. Information Sciences 143, 205–209 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benado, M.: Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier. I. Čehoslovack. Mat. Ž 4(79), 105–129 (1954)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cabrera, I.P., Cordero, P., Gutiérrez, G., Martínez, J., Ojeda-Aciego, M.: Congruence relations on some hyperstructures. Annals of Mathematics and Artificial Intelligence 56(3–4), 361–370 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cabrera, I.P., Cordero, P., Gutiérrez, G., Martínez, J., Ojeda-Aciego, M.: Fuzzy congruence relations on nd-groupoids. International Journal on Computer Mathematics 86, 1684–1695 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cabrera, I.P., Cordero, P., Gutiérrez, G., Martínez, J., Ojeda-Aciego, M.: On congruences and homomorphisms on some non-deterministic algebras. In: Proc. of Intl. Conf. on Fuzzy Computation, pp. 59–67 (2009)Google Scholar
  7. 7.
    Cabrera, I.P., Cordero, P., Gutiérrez, G., Martínez, J., Ojeda-Aciego, M.: On congruences, ideals and homomorphisms over multilattices. In: EUROFUSE Workshop Preference Modelling and Decision Analysis, pp. 299–304 (2009)Google Scholar
  8. 8.
    Cabrera, I.P., Cordero, P., Gutiérrez, G., Martínez, J., Ojeda-Aciego, M.: A coalgebraic approach to non-determinism: applications to multilattices. In: Information Sciences, vol. 180, pp. 4323–4335 (2010)Google Scholar
  9. 9.
    Cabrera, I.P., Cordero, P., Gutiérrez, G., Martínez, J., Ojeda-Aciego, M.: On fuzzy homomorphisms between hyperrings. XV Congreso Español Sobre Tecnologías Y Lógica Fuzzy – ESTYLF 2010 (2010)Google Scholar
  10. 10.
    Chajda, I., Kolařík, M.: Nearlattices. Discrete Math. 308(21), 4906–4913 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Connes, A., Consani, C.: The hyperring of adèle classes. J. Number Theory 131(2), 159–194 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cordero, P., Gutiérrez, G., Martínez, J., Ojeda-Aciego, M., Cabrera, I.P.: Congruence relations on multilattices. In: Intl FLINS Conference on Computational Intelligence in Decision and Control, FLINS 2008, pp. 139–144 (2008)Google Scholar
  13. 13.
    Cordero, P., Gutiérrez, G., Martínez, J., de Guzmán, I.P.: A new algebraic tool for automatic theorem provers. Annals of Mathematics and Artificial Intelligence 42(4), 369–398 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Corsini, P., Leoreanu, V.: Applications of hyperstructure theory. Kluwer, Dordrecht (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Cristani, M.: The complexity of reasoning about spatial congruence. Journal of Artificial Intelligence Research 11, 361–390 (1999)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Cristea, I., Davvaz, B.: Atanassov’s intuitionistic fuzzy grade of hypergroups. Information Sciences 180(8), 1506–1517 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Das, P.: Lattice of fuzzy congruences in inverse semigroups. Fuzzy Sets and Systems 91(3), 399–408 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Davvaz, B., Corsini, P., Leoreanu-Fotea, V.: Fuzzy n-ary subpolygroups. Computers & Mathematics with Applications 57(1), 141–152 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Davvaz, B., Leoreanu-Fotea, V.: Applications of interval valued fuzzy n-ary polygroups with respect to t-norms (t-conorms). Computers & Mathematics with Applications 57(8), 1413–1424 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dutta, T.K., Biswas, B.: On fuzzy congruence of a near-ring module. Fuzzy Sets and Systems 112(2), 399–408 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gaines, B.R.: Fuzzy reasoning and the logics of uncertainty. In: Proc. of ISMVL 1976, pp. 179–188 (1976)Google Scholar
  22. 22.
    Ghilardi, S.: Unification in intuitionistic logic. The Journal of Symbolic Logic 64(2), 859–880 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hansen, D.J.: An axiomatic characterization of multilattices. Discrete Math. 33(1), 99–101 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hesselink, W.H.: A mathematical approach to nondeterminism in data types. ACM Trans. Program. Lang. Syst. 10, 87–117 (1988)CrossRefzbMATHGoogle Scholar
  26. 26.
    Johnston, I.J.: Some results involving multilattice ideals and distributivity. Discrete Math. 83(1), 27–35 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Khan, J., Haque, A.: Computing with data non-determinism: Wait time management for peer-to-peer systems. Computer Communications 31(3), 629–642 (2008)CrossRefGoogle Scholar
  28. 28.
    Klawonn, F.: Fuzzy points, fuzzy relations and fuzzy function. In: Novák, V., Perfilieva, I. (eds.) Discovering World with Fuzzy Logic, pp. 431–453. Physica-Verlag, Heidelberg (2000)Google Scholar
  29. 29.
    Konstantinidou, M., Mittas, J.: An introduction to the theory of hyperlattices. Math. Balkanica 7, 187–193 (1977)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Krasner, M.: Approximation des corps values complets de caracteristique p ≠ 0 par ceux de caracteristique 0. In: Colloque d’algebre superieure, Centre Belge de Recherches Mathematiques Etablissements, pp. 129–206 (1957)Google Scholar
  31. 31.
    Krasner, M.: A class of hyperrings and hyperfields. Internat. J. Math. & Math. Sci. 6(2), 307–312 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ma, X., Zhan, J., Leoreanu-Fotea, V.: On (fuzzy) isomorphism theorems of Γ-hyperrings. Computers and Mathematics with Applications 60(9), 2594–2600 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Marshall, M.: Real reduced multirings and multifields. Journal of Pure and Applied Algebra 205(2), 452–468 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Martínez, J., Gutiérrez, G., de Guzmán, I.P., Cordero, P.: Generalizations of lattices via non-deterministic operators. Discrete Math. 295(1-3), 107–141 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Martínez, J., Gutiérrez, G., Pérez de Guzmán, I., Cordero, P.: Multilattices via multisemilattices. In: Topics in applied and theoretical mathematics and computer science, pp. 238–248. WSEAS (2001)Google Scholar
  36. 36.
    Marty, F.: Sur une généralisation de la notion de groupe. In: Proceedings of 8th Congress Math. Scandinaves, pp. 45–49 (1934)Google Scholar
  37. 37.
    Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Fuzzy logic programming via multilattices. Fuzzy Sets and Systems 158(6), 674–688 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Mittas, J., Konstantinidou, M.: Sur une nouvelle généralisation de la notion de treillis: les supertreillis et certaines de leurs propriétés générales. Ann. Sci. Univ. Clermont-Ferrand II Math. 25, 61–83 (1989)zbMATHGoogle Scholar
  39. 39.
    Murali, V.: Fuzzy congruence relations. Fuzzy Sets and Systems 41(3), 359–369 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Petković, T.: Congruences and homomorphisms of fuzzy automata. Fuzzy Sets and Systems 157, 444–458 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Pickett, H.E.: Homomorphisms and subalgebras of multialgebras. Pacific Journal of Mathematics 21(2), 327–342 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Rachůnek, J.: 0-idéaux des ensembles ordonnés. Acta Univ. Palack. Fac. Rer. Natur. 45, 77–81 (1974)zbMATHGoogle Scholar
  43. 43.
    Schweigert, D.: Near lattices. Math. Slovaca 32(3), 313–317 (1982)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Sun, K., Yuan, X., Li, H.: Fuzzy hypergroups based on fuzzy relations. Computers and Mathematics with Applications 60(3), 610–622 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Tan, Y.: Fuzzy congruences on a regular semigroup. Fuzzy Sets and Systems 117(3), 399–408 (2001)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Vaida, D.: Note on some order properties related to processes semantics. I. Fund. Inform. 73(1-2), 307–319 (2006)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Varacca, D., Winskel, G.: Distributing probability over non-determinism. Mathematical Structures in Computer Science 16(1), 87–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Walicki, M., Meldal, S.: A complete calculus for the multialgebraic and functional semantics of nondeterminism. ACM Trans. Program. Lang. Syst. 17, 366–393 (1995)CrossRefGoogle Scholar
  49. 49.
    Yamak, S., Kazancı, O., Davvaz, B.: Applications of interval valued t-norms (t-conorms) to fuzzy n-ary sub-hypergroups. Information Sciences 178(20), 3957–3972 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Yamak, S., Kazancı, O., Davvaz, B.: Normal fuzzy hyperideals in hypernear-rings. Neural Computing and Applications 20(1), 25–30 (2011)CrossRefGoogle Scholar
  51. 51.
    Yin, Y., Zhan, J., Xu, D., Wang, J.: The L-fuzzy hypermodules. Computers and Mathematics with Applications 59(2), 953–963 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • I. P. Cabrera
    • 1
  • P. Cordero
    • 1
  • M. Ojeda-Aciego
    • 1
  1. 1.Dept. Matemática AplicadaUniversidad de MálagaSpain

Personalised recommendations