Advertisement

A Preliminary Analysis and Simulation of Load Balancing Techniques Applied to Parallel Genetic Programming

  • F. Fernández de Vega
  • J. G. Abengózar Sánchez
  • C. Cotta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6692)

Abstract

This paper addresses the problem of Load-balancing when Parallel Genetic Programming is employed. Although load-balancing techniques are regularly applied in parallel and distributed systems for reducing makespan, their impact on the performance of different structured Evolutionary Algorithms, and particularly in Genetic Programming, have been scarcely studied. This paper presents a preliminary study and simulation of some recently proposed load balancing techniques when applied to Parallel Genetic Programming, with conclusions that may be extended to any Parallel or Distributed Evolutionary Algorithm.

Keywords

Parallel Genetic Programming Load Balancing Distributed Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oussaidène, M., Chopard, B., Pictet, O.V., Tomassini, M.: Parallel Genetic Programming: an application to Trading Models Evolution, pp. 357–362. MIT Press, Cambridge (1996)zbMATHGoogle Scholar
  2. 2.
    Fernández, F., Tomassini, M.,Vanneschi,L.: An empirical study of multipopulation genetic programming. In: GPEM, vol. 4(1), pp. 21–51 (2003)Google Scholar
  3. 3.
    Koza, J.R.: Genetic programming III. Morgan Kaufmann, San Francisco (1999)Google Scholar
  4. 4.
    Poli, R., Langdon, W.B., McPhee, N., Koza, J.: A field guide to genetic programming. Lulu Enterprises Uk Ltd (2008)Google Scholar
  5. 5.
    Koza, J.R.: Evolution and co-evolution of computer programs to control independently-acting agents. In: First International Conference on Simulation of Adaptive Behavior, p. 11. MIT Press, Cambridge (1991)Google Scholar
  6. 6.
    Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  7. 7.
    Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)Google Scholar
  8. 8.
    Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of parallel genetic programming. IEEE Transactions on Evolutionary Computation 7(1), 37–53 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Wang, N.: A parallel computing application of the genetic algorithm for lubrication optimization. Tribology Letters 18(1), 105–112 (2005)CrossRefGoogle Scholar
  10. 10.
    Hummel, S.F., Schmidt, J., Uma, R.N., Wein, J.: Load-sharing in heterogeneous systems via weighted factoring. In: 8th annual ACM Symposium on Parallel Algorithms and Architectures, pp. 318–328 (1996)Google Scholar
  11. 11.
    Yang, Y., Casanova, H.: UMR: a multi-round algorithm for scheduling divisible workloads. In: 17th IEEE (IPDPS), p. 24 (2003)Google Scholar
  12. 12.
    Yang, Y., Casanova, H.: RUMR: Robust Scheduling for Divisible Workloads. In: Proceedings 12th IEEE HDPC 2003, p. 114 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • F. Fernández de Vega
    • 1
  • J. G. Abengózar Sánchez
    • 2
  • C. Cotta
    • 3
  1. 1.Universidad de ExtremaduraMéridaSpain
  2. 2.Junta de ExtremaduraMéridaSpain
  3. 3.Universidad de MálagaMálagaSpain

Personalised recommendations