Visual Mining of Epidemic Networks

  • Stéphan Clémençon
  • Hector De Arazoza
  • Fabrice Rossi
  • Viet-Chi Tran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6692)

Abstract

We show how an interactive graph visualization method based on maximal modularity clustering can be used to explore a large epidemic network. The visual representation is used to display statistical tests results that expose the relations between the propagation of HIV in a sexual contact network and the sexual orientation of the patients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Arazoza, H., Joanes, J., Lounes, R., Legeai, C., Clémençon, S., Perez, J., Auvert, B.: The HIV/AIDS epidemic in Cuba: description and tentative explanation of its low prevalence. BMC Disease (2007)Google Scholar
  2. 2.
    Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for exploring and manipulating networks. In: International AAAI Conference on Weblogs and Social Media (2009)Google Scholar
  3. 3.
    Clémençon, S., De Arazoza, H., Rossi, F., Tran, V.C.: Hierarchical clustering for graph visualization. In: Proceedings of XVIIIth European Symposium on Artificial Neural Networks (ESANN 2011), Bruges, Belgique (April 2011) (to be published)Google Scholar
  4. 4.
    Eades, P., Feng, Q.W.: Multilevel visualization of clustered graphs. In: Proceedings of the Symposium on Graph Drawing, GD 1996, Berkeley, California, USA, pp. 101–112 (September 1996)Google Scholar
  5. 5.
    Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Software - Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  7. 7.
    Keeling, M.J., Eames, K.T.: Networks and epidemic models. Journal of The Royal Society Interface 2(4), 295–307 (2005)CrossRefGoogle Scholar
  8. 8.
    Kwakwa, H.A., Ghobrial, M.W.: Female-to-female transmission of human immunodeficiency virus. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 36(3) (February 2003)Google Scholar
  9. 9.
    Liljeros, F., Edling, C.R., Nunes Amaral, L.A.: Sexual networks: implications for the transmission of sexually transmitted infections. Microbes and Infection 5(2), 189–196 (2003)CrossRefGoogle Scholar
  10. 10.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Noack, A.: Modularity clustering is force-directed layout. Physical Review E 79(026102) (February 2009)Google Scholar
  12. 12.
    Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. In: Proceedings of the 8th International Symposium on Experimental Algorithms SEA 2009, pp. 257–268. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Rothenberg, R.B., Woodhouse, D.E., Potterat, J.J., Muth, S.Q., Darrow, W.W., Klovdahl, A.S.: Social networks in disease transmission: The colorado springs study. In: Needle, R.H., Coyle, S.L., Genser, S.G., Trotter II, R.T. (eds.) Social Networks, Drug Abuse, and HIV Transmission Research Monographs, National Institute on Drug Abuse, vol. 151, pp. 3–18 (1995); Research Monographs, National Institute on Drug AbuseGoogle Scholar
  14. 14.
    Varghese, B., Maher, J., Peterman, T., Branson, B., Steketee, R.: Reducing the risk of sexual hiv transmission: Quantifying the per-act risk for hiv on the basis of choice of partner, sex act, and condom use. Sexually Transmitted Diseases 29(1), 38–43 (2002)CrossRefGoogle Scholar
  15. 15.
    Wylie, J.L., Jolly, A.: Patterns of chlamydia and gonorrhea infection in sexual networks in manitoba, canada. Sexually Transmitted Diseases 28(1), 14–24 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stéphan Clémençon
    • 1
  • Hector De Arazoza
    • 2
    • 3
  • Fabrice Rossi
    • 1
  • Viet-Chi Tran
    • 3
  1. 1.Institut Télécom, Télécom ParisTech, LTCI - UMR CNRS 5141ParisFrance
  2. 2.Facultad de Matemática y ComputaciónUniversidad de la HabanaLa HabanaCuba
  3. 3.Laboratoire Paul Painlevé UMR CNRS No. 8524Villeneuve d’Ascq CedexFrance

Personalised recommendations