Automatic Handling of Tissue Microarray Cores in High-Dimensional Microscopy Images

  • G. Bueno
  • M. Fernández
  • O. Déniz
  • M. García-Rojo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6692)


This paper describes a specific tool to automatically perform the segmentation and archiving of tissue microarray (TMA) cores in microscopy images at different magnification, that is, 5x, 10x, 20x and 40x. TMA enables researchers to extract small cylinder of single tissues (core sections) from histological sections and arrange them in an array on a paraffin block such that hundreds can be analyzed simultaneously. A crucial step to improve the speed and quality of these analyses is the correct recognition of each tissue position in the array. However, usually the tissue cores are not aligned in the microarray, the TMA cores are broken and the digital images are noisy. We develop a robust framework to handle core sections under these conditions. The algorithms are able to detect, stitch and archive the TMA cores. Once the TMA cores are segmented they are stored in a relational database allowing their location and classification for further studies of benign-malignant classification. The method was shown to be reliable for handling the TMA cores and therefore enabling further large scale molecular pathology investigations.


Relational Database Tissue Microarray Tissue Core Core Section Rigid Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, W., Reiss, M., Foran, D.: A prototype for unsupervised analysis of tissue microarrays for cancer research and diagnostics. IEEE Trans. on Information Technology in Biomedicine 8(2), 89–96 (2004)CrossRefGoogle Scholar
  2. 2.
    Dell’Anna, R., Demichelis, F., Sboner, A., Barbareschi, M.: An automated procedure to properly handle digital images in large scale tissuemicroarray experiments. Comput. Methods and Programs in Biomedicine 79(3), 197–208 (2005)CrossRefGoogle Scholar
  3. 3.
    Rimm, D., Camp, R., Charette, L., Olsen, D., Reiss, M.: Tissue microarray: A new technology for amplification of tissue resources. Cancer 7(1), 24–31 (2001)Google Scholar
  4. 4.
    Dhanasekaran, S.M., Barrette, T., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., Pienta, K., Rubin, M., Chinnalyan, A.: Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001)CrossRefGoogle Scholar
  5. 5.
    Kuraya, K.A., Simon, R., Sauter, G.: Tissue microarrays for high-throughput molecular pathology. Ann. Saudi. Med. 24, 169–174 (2004)CrossRefGoogle Scholar
  6. 6.
    Liu, C., Montgomery, K., Natkunam, Y., West, R., Nielsen, T., Cheang, M., Turbin, D., Marinelli, R., de Rijn, M.V., Higgins, J.: Tma-combiner, a simple software tool to permit analysis of replicate cores on tissue microarrays. Mod. Pathol. 18, 1641–1648 (2005)Google Scholar
  7. 7.
    Nohle, D., Hackman, B., Ayers, L.: The tissue micro-array data exchange specification: a web based experience browsing imported data. BMC Med. Inform. Decis. Mak. 5(25) (2005)Google Scholar
  8. 8.
    Rabinovich, A., Krajewski, S., Krajewska, M., et al.: Framework for parsing, visualizing and scoring tissue microarray images. IEEE Tran. on Information Technology in Biomedicine (2), 209–219 (2006)Google Scholar
  9. 9.
    Mea, V.D., Bin, I., Pandolfi, M., Loreto, C.D.: A web-based system for tissue microarray data management. Diagnostic Pathology 1, 31–36 (2006)CrossRefGoogle Scholar
  10. 10.
    Demichelis, F., Sboner, A., Barbareschi, M., Dell’Anna, R.: Tmaboost: An integrated system for comprehensive management of tissue microarray data. IEEE Trans. on Information Technology in Biomedicine 10(1), 19–27 (2006)CrossRefGoogle Scholar
  11. 11.
    Strömberg, S., Björklund, M., Asplund, C., Sköllermo, A., et al.: A high-throughput strategy for protein profiling in cell microarrays using automated image analysis. Proteomics 7, 2142–2150 (2007)CrossRefGoogle Scholar
  12. 12.
    Shaknovich, R., Celestine, A., Yang, L., Cattoretti, G.: Novel relational database for tissue microarray analysis. Archives of Pathology Laboratory Medicine 127 (2003)Google Scholar
  13. 13.
    Liu, C., Prapong, W., Natkunam, Y., Alizadeh, A., Montgomery, K., Gilks, C., Rijn, M.: Software tools for high-throughput analysis and archiving of ihc staining data obtained with microarrays. Am. J. Pathol. 161(5), 1557–1565 (2002)CrossRefGoogle Scholar
  14. 14.
    Morgan, J., Iacobuzio-Donahue, C., Razzaque, B., Faith, D., Marzo, A.D.: Tmaj: Open source software to manage a tissue microarray database. Proc. of APIII Meeting (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • G. Bueno
    • 1
  • M. Fernández
    • 1
  • O. Déniz
    • 1
  • M. García-Rojo
    • 2
  1. 1.E.T.S.I. IndustrialesUniversidad de Castilla-La ManchaSpain
  2. 2.Hospital General de Ciudad RealSpain

Personalised recommendations